
PyXspec
1.1.0

Generated by Doxygen 1.7.5.1

Tue Jul 21 2015 10:41:44

CONTENTS i

Contents

1 PyXspec Documentation 1

1.1 Introduction . 1

1.2 About This Manual . 1

1.3 Authors . 1

2 Release Notes 1

2.1 Version 1.1.0 Jul 2015 [XSPEC 12.9.0] 1

2.1.1 New Features . 2

2.1.2 Fixes . 2

2.2 Version 1.0 Feb 2012 [XSPEC 12.7.1] 3

2.2.1 New Features . 3

2.2.2 Fixes . 4

3 Build and Install PyXspec 4

3.1 Requirements . 4

3.2 Building/Installing . 4

3.3 Running on Mac OS X . 5

3.4 Troubleshooting . 6

4 A Tutorial - Quick Version 7

4.1 Jumping In - The Really Quick Version 7

4.2 Terminology . 8

4.3 Getting Help . 8

4.4 The 6 Global Objects . 8

4.5 Loading And Removing Data . 9

4.6 Defining Models . 10

4.6.1 Component and Parameter Objects 11

4.6.2 Setting Multiple Parameters At A Time 12

4.7 Fitting . 13

4.8 Plotting . 14

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

CONTENTS ii

5 A Tutorial - Extended Version 16

5.1 Contents . 16

5.2 Data . 17

5.2.1 Background, Response, and Arf 17

5.2.2 Ignore/Notice . 18

5.3 Models . 19

5.3.1 Model With Multiple Data Groups 19

5.3.2 Defining Multiple Models . 20

5.3.3 Component And Parameter Access Part 2 21

5.3.4 Gain Parameters (Response Models) 22

5.3.5 Flux Calculations . 23

5.3.6 Local Models in C/C++/Fortran 23

5.3.7 Local Models in Python . 23

5.4 Fitting . 24

5.4.1 Error . 24

5.4.2 Query . 25

5.4.3 Steppar . 25

5.5 Fakeit . 25

5.5.1 From Existing Spectra . 26

5.5.2 From Scratch . 26

5.5.3 FakeitSettings Objects . 26

5.5.4 OGIP Type-2 Files . 27

5.6 Monte Carlo Markov Chains (MCMC) 28

5.7 Plotting . 30

5.8 XSPEC Settings . 31

5.9 Logging And XSPEC Output . 31

5.10 Exceptions And Error Handling . 32

5.11 Adding Attributes To PyXspec Objects 32

5.12 Using With Other Packages . 33

6 What’s Missing 34

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

CONTENTS iii

7 Class Index 35

7.1 Class List . 35

8 Class Documentation 35

8.1 Background Class Reference . 35

8.1.1 Detailed Description . 36

8.1.2 Constructor & Destructor Documentation 36

8.1.3 Member Data Documentation 37

8.2 Chain Class Reference . 38

8.2.1 Detailed Description . 38

8.2.2 Constructor & Destructor Documentation 39

8.2.3 Member Function Documentation 39

8.2.4 Member Data Documentation 39

8.3 ChainManager Class Reference . 41

8.3.1 Detailed Description . 41

8.3.2 Constructor & Destructor Documentation 42

8.3.3 Member Function Documentation 42

8.3.4 Member Data Documentation 43

8.4 Component Class Reference . 44

8.4.1 Detailed Description . 44

8.4.2 Constructor & Destructor Documentation 44

8.4.3 Member Function Documentation 45

8.4.4 Member Data Documentation 45

8.5 DataManager Class Reference . 45

8.5.1 Detailed Description . 46

8.5.2 Constructor & Destructor Documentation 46

8.5.3 Member Function Documentation 46

8.5.4 Member Data Documentation 50

8.6 FakeitSettings Class Reference . 50

8.6.1 Detailed Description . 51

8.6.2 Constructor & Destructor Documentation 52

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

CONTENTS iv

8.6.3 Member Data Documentation 52

8.7 FitManager Class Reference . 54

8.7.1 Detailed Description . 55

8.7.2 Constructor & Destructor Documentation 57

8.7.3 Member Function Documentation 57

8.7.4 Member Data Documentation 59

8.8 Model Class Reference . 62

8.8.1 Detailed Description . 63

8.8.2 Constructor & Destructor Documentation 63

8.8.3 Member Function Documentation 64

8.8.4 Member Data Documentation 66

8.9 ModelManager Class Reference . 67

8.9.1 Detailed Description . 68

8.9.2 Constructor & Destructor Documentation 68

8.9.3 Member Function Documentation 68

8.9.4 Member Data Documentation 75

8.10 Parameter Class Reference . 75

8.10.1 Detailed Description . 76

8.10.2 Constructor & Destructor Documentation 77

8.10.3 Member Function Documentation 77

8.10.4 Member Data Documentation 78

8.11 PlotManager Class Reference . 79

8.11.1 Detailed Description . 80

8.11.2 Constructor & Destructor Documentation 81

8.11.3 Member Function Documentation 82

8.11.4 Member Data Documentation 84

8.12 Response Class Reference . 86

8.12.1 Detailed Description . 87

8.12.2 Constructor & Destructor Documentation 88

8.12.3 Member Function Documentation 88

8.12.4 Member Data Documentation 89

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

1 PyXspec Documentation 1

8.13 RModel Class Reference . 90

8.13.1 Detailed Description . 91

8.13.2 Constructor & Destructor Documentation 91

8.13.3 Member Function Documentation 92

8.13.4 Member Data Documentation 92

8.14 Spectrum Class Reference . 92

8.14.1 Detailed Description . 94

8.14.2 Constructor & Destructor Documentation 96

8.14.3 Member Function Documentation 96

8.14.4 Member Data Documentation 98

8.15 XspecSettings Class Reference . 102

8.15.1 Detailed Description . 103

8.15.2 Constructor & Destructor Documentation 104

8.15.3 Member Function Documentation 104

8.15.4 Member Data Documentation 105

1 PyXspec Documentation

The source code distribution of XSPEC is required for using PyXspec

1.1 Introduction

PyXspec is an object oriented Python interface to the XSPEC spectral-fitting program.
It provides an alternative to Tcl, the sole scripting language for standard Xspec usage.
With PyXspec loaded, a user can run Xspec with Python language scripts or interac-
tively at a Python shell prompt.

Not all of the full standard Xspec functionality has been implemented (see What’s -
Missing). However we will continue to add to this, and we look forward to hearing users’
comments and suggestions to help us prioritize the future work.

1.2 About This Manual

The manual contains a Build/Install and Troubleshoot section, a Quick Version tutorial
showing basic PyXspec usage, and an Extended Version tutorial for greater functional-
ity. The Quick Version is the recommended starting point for all users.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

1.3 Authors 2

A class reference guide follows, with descriptions for each of the PyXspec public class
methods and attributes. The guide is auto-generated by Doxygen directly from the Py-
Xspec Python code files.

1.3 Authors

PyXspec was developed by Craig Gordon and Keith Arnaud

HEASARC Software Development, Astrophysics Science Division,

Code 660.1, NASA/GSFC, Greenbelt MD 20771

Please send questions, comments, and bug reports to xspec12@athena.gsfc.-
nasa.gov

2 Release Notes

2.1 Version 1.1.0 Jul 2015 [XSPEC 12.9.0]

2.1.1 New Features

• Local models may now be written in Python and inserted into XSPEC’s models
library with new AllModels.addPyMod() function.

• The plot array retrieval interface (ie. Plot.x(), Plot.y()) has been expanded to allow
retrieval from secondary plot panels in a mulit-panel plot.

• New Parameter.index attribute.

• New backscale attribute for Spectrum and Background classes.

• Added new function Fit.stepparResults() for retrieving results of most recent
steppar run. (Previously available as a patch)

• New noWrite option added to AllData.fakeit (Previously available as patch)

2.1.2 Fixes

• The Model.__call__ function now returns Parameter objects by reference rather
than by value. This is to allow the returned object to retain any custom attributes
the user may have added.

• Improved handling of Ctrl-c breaking in several prompting contexts.

Version 1.0.4 Jul 2014 [XSPEC 12.8.2]

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

mailto:xspec12@athena.gsfc.nasa.gov
mailto:xspec12@athena.gsfc.nasa.gov

2.2 Version 1.0 Feb 2012 [XSPEC 12.7.1] 3

• Added Fit.testStatistic attribute for retrieving the test statistic value from the most
recent fit.

• Added compiler macros for switching to <Python/Python.h> include paths when
building on Mac platforms.

• Bug fix for get/set Spectrum.correction files on OS X Mavericks.

Version 1.0.3 Aug 2013 [XSPEC 12.8.1]

• The Fit.statMethod and statTest attributes can now be set for a range of individual
spectra rather than only applying to all.

• Bug fix to the RModel class (ie. the class of the Response.gain attribute). If the
user assigned multiple RModel objects to point to the same underlying XSPEC
response gain, changes made through one object weren’t necessarily showing up
in the other objects. This also fixes a related bug created in Xspec patch 12.8.0l
that caused a list of error messages to appear (only) in Python versions 2.6.x.

Version 1.0.2 Jan 2013

• Added Xset.parallel attribute, with options ’leven’ and ’error’ for setting parallel
processes.

• Added Fit.statTest attribute for getting/setting the XSPEC test statistic.

Version 1.0.1 Dec 2012 [XSPEC 12.8.0]

• 2 additions to the Spectrum class: an ignored attribute and an ignoredString()
function. The former returns a Python list object containing every ignored channel
number. The latter returns the same information in convenient string form, which
can be reused as input to a future ignore or notice command.

2.2 Version 1.0 Feb 2012 [XSPEC 12.7.1]

Changes relative to the PyXspec Beta version:

∗∗∗ Important: Two Backwards-Incompatible Changes ∗∗∗

• When using multiple data groups, the Model objects assigned to the higher-
numbered groups now all have their parameters indexed from 1 to nPar. For
example with a 3 parameter model applied to 2 data groups, you would now
access the first parameter in the 2nd model object with "mod2(1)" rather than
"mod2(4)".

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

2.2 Version 1.0 Feb 2012 [XSPEC 12.7.1] 4

• The Model.setPars() function (introduced with patch 12.7.0f) used the pn key-
word argument syntax to set non-consecutive parameters. This has been re-
placed. with the use of Python dictionaries. For example, m.setPars(p2=.3,
p4=1.1) should now be m.setPars({2:.3, 4:1.1}).

2.2.1 New Features

• Added Standard XSPEC’s gain command functionality. This is implemented with
the new gain attribute for Response classes. Response.gain is a class of type
RModel, and has two Parameter objects: slope and intercept.

• New AllModels.setPars() function for changing multiple parameters in multiple -
Model objects with a single call.

• Now compatible with Cygwin.

Features Previously Added As Patches To XSPEC 12.7.0

• AllModels.initpackage() for building local models inside the Python shell.

• Bayesian inference provided through the Fit.bayes and Parameter.prior attributes.

• Fit.goodness() and Fit.improve() functions.

• Model.setPars() function for changing multiple parameters with a single call.

• AllModels.simpars() function to do the equivalent of Standard XSPEC’s tclout sim-
pars.

• Fit.covariance attribute for retrieving the covariance matrix from the most recent
fit.

• Model.expression attribute which stores the model expression string.

• AllModels.sources attribute which stores a map of source number and model
name assignments.

2.2.2 Fixes

• All PyXspec bug fixes previously released as patches to XSPEC 12.7.0 are in-
cluded.

• Now handles model component-by-name access when the component is a table
model whose name includes whitespace.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

3 Build and Install PyXspec 5

3 Build and Install PyXspec

3.1 Requirements

Since we do not distribute Python with the HEASOFT packages, you’ll need to have it
already installed on your system (which it is with most Linux and Mac OSX distributions).
PyXspec requires a Python version of 2.x where x is 3 or later. The python executable
must be on your path, and with the library and header files located in the standard
directories relative to the executable (see the Troubleshooting section for more info).

3.2 Building/Installing

PyXspec is fully integrated into the general HEASOFT build procedure, as described at
http://heasarc.gsfc.nasa.gov/lheasoft/install.html . So it will
be built and installed automatically with the rest of XSPEC/HEASOFT, requiring no
additional effort from the user.

Once HEASOFT is finished building and installing, you should find PyXspec’s code files
and lib_pyXspec.so library in the directory $HEADAS/lib/python/xspec.

When you run the HEASOFT initialization script ($HEADAS/headas-init.csh or .sh), it
will add $HEADAS/lib/python to your PYTHONPATH environment. This allows Python
find the PyXspec module so that you may load it into your session from anywhere, using
the "import xspec" statement.

3.3 Running on Mac OS X

These issues apply only to Mac OS X users. Linux users may skip this section.

Beginning with HEASoft-6.16, Mac builds are 64-bit by default. Therefore if you have a
default build, you should no longer run Python in 32-bit mode.

Case 1: Running the default Xcode distribution of Python (normally /usr/bin/python).

You may use the default Xcode Python if your HEASOFT distribution was built using the
Xcode gcc and g++ compilers, with only the Fortran compiler coming from a 3rd party
such as Fink or MacPorts. But if you built HEASOFT with ALL of your compilers coming
from Fink or MacPorts, you cannot use the Xcode Python (see Case 3).

HEASoft builds on Macs are now 64-bit by default. However if (and only if) you forced
your build into 32-bit mode by configuring with --enable-mac_32bit_build=yes, you will
need to set:

export VERSIONER_PYTHON_PREFER_32_BIT=yes # Bourne-like shells
or

setenv VERSIONER_PYTHON_PREFER_32_BIT yes # C-like shells

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

http://heasarc.gsfc.nasa.gov/lheasoft/install.html

3.4 Troubleshooting 6

BEFORE importing the xspec module into Python.

Case 2: Running a Python distribution obtained from www.python.org.

If (and only if) you forced your HEASoft build into 32-bit mode, you’ll need to ensure that
you run the 32-bit Python version and the method used in Case 1 will not work. Instead,
invoke 32-bit Python by way of the arch command. For example:

arch -i386 python2.7

Case 3: Running the Fink or MacPorts Python.

This applies only to users who have built HEASOFT using Fink or MacPorts for ALL 3
of their compilers (gcc, g++, gfortran). Note that you can avoid all of this if you build
HEASOFT using Mac’s own Xcode gcc and g++, and only use Fink or MacPorts for
gfortran.

You are going to have to get the corresponding Fink or MacPorts distribution of Python
for both building and running PyXspec. The standard Xcode Python (in /usr/bin) will
conflict with libraries pulled in by the Fink and MacPorts gcc.

To rebuild PyXspec using the Fink or MacPorts Python, first edit the file heasoft-<ver>/-
Xspec/src/XSUser/Python/xspec/Makefile by adding definitions for PYTHON_INC and
PYTHON_LIB that point to your Fink or Mac Python header and library files. For exam-
ple if using the Fink Python v2.6 in its default location, you would insert the following in
your Makefile, after the definition for HD_LIBRARY_ROOT and before the definition for
HD_CXXFLAGS:

PYTHON_INC = /sw/include/python2.6

PYTHON_LIB = -L/sw/lib/python2.6/config # Note that this
must begin with ’-L’

Then from the same directory containing the Makefile, do:

hmake clean

hmake

hmake install

3.4 Troubleshooting

If the HEASOFT configuration stage fails when it’s processing PyXspec, it will just issue
a warning and continue. Its failure should not affect the rest of the XSPEC and HEASO-
FT build. Standard XSPEC will still be fully functional, but its Python interface won’t be
available.

The most likely cause of a PyXspec build failure is that the HEASOFT configuration
script can’t find a python executable and/or its accompanying library and header files.
You should first check that the command "which python" can find an executable on your

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4 A Tutorial - Quick Version 7

path. The configuration script first looks for python, which is normally a symbolic link
to the version-specific executable. If it doesn’t find that, it looks for python2.7 down to
python2.3 in descending order.

Once it’s found an executable, it looks for Python.h and libpython[m.n].so (or .dylib) in
the directories ../include/python[m.n] and ../lib respectively, relative to the executable
location. The configuration fails if either file is missing.

If you are running on Mac OS X and get a Python "ImportError" message containing
such statements as no suitable image found and mach-o, but wrong architecture,
it’s likely you are running 32-bit mode Python while your default HEASoft build is now
64-bit. Make sure you are NOT still using the settings in Case 1 and 2 above for running
32-bit Python.

If you are running on a Mac and have built your HEASOFT installation with all 3 compil-
ers (gcc, g++, gfortran) coming from Fink or MacPorts, AND you get a runtime error
that begins with something like:

python(86419) malloc: ∗∗∗ error for object 0x574b160:
pointer being freed was not allocated

then it likely means there’s a conflict between your default Python distribution and the
compiler libraries used to build PyXspec. Please see Case 3 in the previous section for
how to rebuild PyXspec with a Fink or MacPort distribution of Python.

4 A Tutorial - Quick Version

This assumes the user already has a basic familiarity with both XSPEC and Python.
Everything in PyXspec is accessible by importing the package xspec into your Python
script.

PyXspec can be utilized in a Python script or from the command line of the plain inter-
active Python interpreter. PyXspec does not implement its own command handler, so it
is NOT intended to be run as the Python equivalent of a traditional interactive XSPEC
session (which is really an enhanced interactive Tcl interpreter). In other words you
launch an interactive PyXspec session with:

UNIX>python

>>> import xspec

>>>

rather than:

UNIX>xspec

XSPEC12>

Note that in all the tutorial examples the xspec package name qualifier is left off. You
must either include the xspec qualifier:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.1 Jumping In - The Really Quick Version 8

s = xspec.Spectrum("file1.pha")

or use a variation of the Python import or from...import commands:

from xspec import ∗

s = Spectrum("file1.pha")

4.1 Jumping In - The Really Quick Version

A simple Xspec load-fit-plot Python script may look something like this:

#!/usr/bin/python

from xspec import ∗

Spectrum("file1.pha")

Model("wabs∗pow")

Fit.perform()

Plot.device = "/xs"

Plot("data")

Keeping this template in mind, we’ll proceed to fill in the details...

4.2 Terminology

This description uses the standard Python object-oriented terminology, distinguishing
between classes and objects. Class is used when referring to the type or definition of
an object . An object refers to a specific instance of a class and is normally assigned to
a variable. For example a user may load 3 data files by creating 3 spectral data objects
s1, s2, and s3, which are all instances of the class Spectrum.

The functions and stored data members that make up the definition of a class are
referred to as methods and attributes respectively.

The term Standard XSPEC refers to the traditional ways of using XSPEC, either with a
Tcl script or an interactive XSPEC session.

4.3 Getting Help

There are two ways to get help for programming with PyXspec classes. The first is
by viewing the Classes section of this manual. The Classes:Class List subsection is
particularly useful as an entry point, as it contains hyperlinks to descriptions of every Py-
Xspec class that is part of the public interface. The second way is to call Python’s built-
in help([class]) function from the interactive Python shell. Both methods will display

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.4 The 6 Global Objects 9

essentially the same information, which originates in the class docstrings in the code
files.

4.4 The 6 Global Objects

An XSPEC session fundamentally consists of loading data, fitting that data to a model,
and plotting the results. To manage these operations, PyXspec offers the user 6 global
objects: AllChains, AllData, AllModels, Fit , Plot , and Xset . Note that these are NOT the
names of classes. They are instantiated objects of the class types shown in Table 1.

Object Name Class Role
AllChains ChainManager Monte Carlo Markov

Chain container
AllData DataManager Container for all loaded

data sets (objects of
class Spectrum)

AllModels ModelManager Container for all Model
objects

Fit FitManager Manager class for setting
properties and running a
fit

Plot PlotManager Manager class for
performing XSPEC plots

Xset XspecSettings Storage class for Xspec
settings

Table 1: Table 1. PyXspec global objects

PyXspec instantiates these objects immediately upon the importing of the xspec pack-
age. You cannot create any other objects of these class types, as they each allow only
1 instance of their type. (They are singletons in the language of design patterns.)

Operations involving these should ALWAYS be performed through the objects and NOT
their class names. These class names should never appear in your code.

4.5 Loading And Removing Data

Spectral data files can be loaded in several ways. You can create an object of the
Spectrum class by passing it the data file name:

s1 = Spectrum("file1.pha")

which also adds the new object s1 to the AllData container. Or you can simply add the
new file directly to the container without retrieving a Spectrum object:

AllData += "file1.pha"

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.6 Defining Models 10

Later you can always obtain a Spectrum object reference to any of the loaded spectra
by passing AllData an integer:

s2 = AllData(2) # s2 is a reference to the 2nd loaded
spectrum

For more complicated data loading, you have access to the same functionality in -
Standard XSPEC’s data command. Simply pass a string to the AllData object’s __-
call__ method:

AllData("file1 file2 2:3 file3")

Note that only the last example allows you to assign multiple data groups, the 3rd spec-
trum being assigned to data group 2. Also note that in the last example any previously
loaded data sets are removed, thus reproducing the behavior of Standard XSPEC’s
data command.

Other ways of removing Spectrum objects (ie. data sets) from the container:

AllData -= 3 # Removes the 3rd Spectrum object (the spectrum
with index number 3) from the container.

AllData -= s1 # Removes the Spectrum object s1.

AllData -= "∗" # Removes all Spectrum objects.

AllData.clear() # Removes all Spectrum objects.

You can check the current state of the AllData container at any time by doing:

AllData.show()

Similarly, to view information about a single Spectrum object:

s2.show()

4.6 Defining Models

The basic way of defining an XSPEC model is to create an object of the PyXspec class
Model. Simply pass in a string containing a combination of 1 or more XSPEC model
components. Since this uses the same syntax as Standard XSPEC’s model com-
mand, component abbreviations are allowed:

m1 = Model("wa∗po + ga")

and to see a complete listing of available XSPEC model components, do:

Model.showList()

When you define a model like this, PyXspec also automatically adds the new object to
the global AllModels container. If the model is applied to multiple data groups, object
copies are added to the container for each data group.

Similar to the case of spectral data, you can also load models directly into the global

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.6 Defining Models 11

container:

Another way to define a new model and create an object
for each data group.

AllModels += "wa∗po + ga"

Retrieve the model object assigned to data group 2.

m2 = AllModels(2)

Various ways to remove all model objects from the container.

AllModels.clear()

AllModels -= "∗"

To display models and their parameters:

This displays all parameters in all model objects:

AllModels.show()

While this displays just parameters 1,2,3 and 5:

AllModels.show("1-3, 5")

This displays a single model object:

m2.show()

For defining mulitple (or named) models and assigning multiple sources, please see the
Extended Tutorial section.

4.6.1 Component and Parameter Objects

Model objects contain Component objects and Component objects contain Parameter
objects. There are several ways to access and set components and parameters individ-
ually (and if you want to change many parameter values at once, it may be faster to use
the Model or AllModels setPars methods described in the next section). Examples of
individual Component and Parameter object access:

Component objects are accessible-by-name as Model object
attributes∗:

comp1 = m1.wabs

comp2 = m1.powerlaw

Parameter objects are accessible-by-name as Component
object attributes:

par4 = m1.gaussian.LineE

...and we can modify their values:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.6 Defining Models 12

par4.values = 3.895

m1.wabs.nH = 5.0

comp2.PhoIndex = 1.5

Can also get a Parameter object directly from a Model,
without going through a Component.

Just pass the Model the Parameter index number:

par5 = m1(5)

Examples of numerical operations allowed with Parameter
objects:

par4 += 0.75

par4 ∗= 2.0

y1 = m1.wabs.nH∗100.0

y2 = par4 + par5

(∗)For models with duplicate copies of components, see the Extended Tutorial for ac-
cessing Component objects by name.

Note that in the above examples, only the parameter’s value is being accessed or mod-
ified. To change all or part of its FULL list of settings including auxiliary values: value,
fit delta, min, bot, top, max , you can set its values attribute to a tuple or list of size 1-6:

par4.values = 4.3, .01, 1e-3

par4.values = [4.3, .01, 1e-3, 1e-2, 100, 200]

Or for greater flexibility you can set it to a string using Standard XSPEC’s newpar com-
mand syntax:

This allows you to set new values non-consecutively.

par4.values = "1.0, -.01„„150"

A quick way to freeze or thaw a parameter is to toggle its frozen attribute:

par4.frozen = False

par5.frozen = True

To link a parameter to one or more others, set its link attribute to a link expression string
as you would have with the newpar command. To remove the link, set link to an empty
string or call the parameter’s untie method.

par5.link = "2.3 ∗ 4" # Link par 5 to par 4 with a multiplicative
constant.

par5.link = "" # Removes the link.

par5.untie() # Also removes the link.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.6 Defining Models 13

Also ALL linked parameters in a model object can be untied with a single call to the
Model class untie method.

To display a parameter’s full set of values (including auxiliary values), just print its values
attribute:

>>> print par4.values

[6.5, 0.05, 0.0, 0.0, 1000000.0, 1000000.0]

>>>

4.6.2 Setting Multiple Parameters At A Time

You can set multiple parameter values with a single call using the Model or AllModels
setPars methods. This may be considerably faster than setting parameters one at a time
through the individual Parameter objects as shown in the previous section. With set-
Pars, the model will be recalculated just ONCE after all the changes have been made.
But when setting through individual Parameter objects, the model will be recalculated
after EACH parameter change.

For Model object m1, supply 1 or more new parameter
values in consecutive order:

m1.setPars(2.5, 1.4, 1.0e3) # This changes pars 1, 2, and
3.

Can also change paramater auxiliary values by passing a
string using the same

syntax as with Standard XSPEC’s newpar command:

m1.setPars(.95, "1.8„-5,-4,10,10")

Now set parameters NON-CONSECUTIVELY by passing a -
Python dictionary object.

This example changes pars 1, 2, 4, and 6:

m1.setPars(.95, 1.2, {4:9.8, 6:2.0})

Parameters can also be initialized by passing values to the Model object constructor.
You do this by setting the Model constructor’s setPars keyword argument to a tuple, list,
or dictionary (or just a single value or string if only setting the first parameter):

Supply values for parameters 1 and 3, use defaults for
the rest.

m = Model("wa∗ga", setPars={1:1.5, 3:.2})

Supply values for 1 and 2, use defaults for the rest.

m = Model("wa∗ga", setPars=(1.5, 0.7))

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.7 Fitting 14

Supply value only for 1.

m = Model("wa∗ga", setPars=1.5)

Finally, if you wish to set multiple parameters that belong to different model objects,
you must use the AllModels container’s setPars method. This follows the same syntax
rules as the single Model setPars, except that you also supply the Model objects as
arguments:

Change pars 1 and 3 in m1, and pars 1 and 2 in m2:

AllModels.setPars(m1, {1:6.4, 3:1.78}, m2, 3.5, 0.99)

4.7 Fitting

Once data and models are loaded, fitting is performed by calling the perform method
of the Fit global object:

Fit.perform()

Some of the more frequently modified fit settings are the type of statistic to minimize
and the maximum number of fit iterations to perform. These settings are attributes of
Fit :

Fit.nIterations = 100

Fit.statMethod = "cstat"

Fit.statMethod = "chi"

Please see the class reference guide and the Extended Tutorial for Fit ’s complete func-
tionality.

To display the fit results at any time:

Fit.show()

4.8 Plotting

In Standard XSPEC, plot settings are adjusted using the setplot command while the plot
is displayed through the plot command. In PyXspec, all plot settings and functionality
is handled through the global Plot object. A device must be set before any plots can be
displayed, and this done through the device attribute:

Plot.device = "/xs"

The device can also be set to print to an output file in several formats. The list of possible
devices is given by the cpd command in the Standard XSPEC manual.

A typical setting to adjust is the X-axis units. You can choose to plot channel numbers, or
select from various energy and wavelength units. The strings can also be abbreviated.
Examples:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

4.8 Plotting 15

Plot.xAxis = "channel"

Plot.xAxis = "MeV"

Plot.xAxis = "Hz"

Plot.xAxis = "angstrom"

The displays of individual additive components or background spectra is toggled by
setting their attributes to a bool:

Plot.add = True

Plot.background = False

Similarly log/linear settings for data plots (when using energy or wavelength units):

Plot.xLog = True

Plot.yLog = False

The current plot settings are displayed with:

Plot.show()

To actually display a plot, send 1 or more string arguments to the Plot __call__ method:

Single panel plots

Plot("data")

Plot("model")

Plot("ufspec")

Multi panel plots

Plot("data chisq")

Plot("data","model","resid")

Call Plot with no arguments to repeat the previously
entered Plot command

Plot()

After displaying a plot, you can get an array of the plotted values by calling one of Plot’s
retrieval methods. All of these functions take an optional plot group number argument
for the case of multiple plot groups, and all return the plot values in a Python list.

Plot("data")

xVals = Plot.x()

yVals = Plot.y()

yVals2 = Plot.y(2) # Gets values for data in the second
plot group

modVals = Plot.model()

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5 A Tutorial - Extended Version 16

To get a background array, Plot.background must be set
prior to plot

Plot.background = True

Plot("data")

bkg = Plot.backgroundVals()

Retrieve error arrays

xErrs = Plot.xErr()

yErrs = Plot.yErr()

5 A Tutorial - Extended Version

This assumes the user is familiar with the basics of PyXspec as explained in the Quick
Tutorial.

5.1 Contents

• Data

– Background, Response, and Arf

– Ignore/Notice

• Models

– Model With Multiple Data Groups

– Defining Multiple Models

– Component And Parameter Access Part 2

– Gain Parameters

– Flux Calculations

– Local Models In C/C++/Fortran

– Local Models In Python

• Fitting

– Error

– Query

– Steppar

• Fakeit

– From Existing Spectra

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.2 Data 17

– From Scratch

– FakeitSettings Objects

– OGIP Type-2 Files

• Monte Carlo Markov Chains (MCMC)

• Plotting

• XSPEC Settings

• Logging And XSPEC Output

• Exceptions And Error Handling

• Adding Attributes To PyXspec Objects

• Using With Other Packages

5.2 Data

5.2.1 Background, Response, and Arf

When a Spectrum object is created from a spectral data file, PyXspec also reads the
file’s BACKFILE, RESPFILE, and ANCRFILE keywords and will load the correspond-
ing background, response, and arf files. The spectrum’s Background and Response
objects are then available as attributes of the Spectrum class, while the arf file name
becomes an attribute of the Response class:

s1 = Spectrum("file1")

b1 = s1.background

r1 = s1.response

arfFileName = r1.arf

Note that you never create Background and Response objects directly. They are ac-
cessible only through the Spectrum class attributes.

These attributes may also be used to add, change, or remove auxiliary files to an exist-
ing Spectrum object:

Add or replace files:

s1.background = "newBackground.pha"

s1.response.arf = "newArf.pha"

Removal examples:

s1.response = None

s1.background = ""

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.2 Data 18

Background and Spectrum store their original file names in their fileName attribute.
This means that while you SET the Spectrum.background object by assigning it a file
name (as shown above), to GET the file name you must access its fileName attribute:

bkgFileName = s1.background # Wrong!!! This returns the
entire Background object, not a string.

bkgFileName = s1.background.fileName # Correct

Response stores its RMF and optional ARF file names in its rmf and arf attributes
respectively:

rmfFileName = r1.rmf

arfFileName = r1.arf

Background objects have some of the same attributes as Spectrum objects, such as
areaScale, exposure, energies, and values. The Spectrum object’s values array (ac-
tually a tuple) does NOT include contributions from the background. Those are stored
separately in the associated Background object. Please see the Classes reference
guide or call the Python help function for the full class descriptions.

The Spectrum class also provides a multiresponse array attribute for assigning mul-
tiple detectors (or sources) to a spectrum. The standard 0-based Python array indices
corresponding to the 1-based XSPEC source numbers:

Set a response for source 2

s1.multiresponse[1] = "resp2.rsp"

Get the response object for source 2

r2 = s1.multiresponse[1]

Remove the response from source 2

s1.multiresponse[1] = None

This is the same as doing s1.response = "resp1.rsp"

s1.multiresponse[0] = "resp1.rsp"

The rule is: when doing single-source analysis (typical of most XSPEC sessions) use
the response attribute, otherwise use the multiresponse array.

5.2.2 Ignore/Notice

To ignore channels for a SINGLE spectrum, call the Spectrum object’s ignore method
passing a string following the same syntax as for Standard XSPEC’s ignore command:

s1.ignore("20-30 50-∗∗")

s1.ignore("∗∗-5")

Similarly, to notice channels in a single spectrum:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.3 Models 19

s1.notice("10-30,80-∗∗")

s1.notice("all")

As with Standard XSPEC, if the x-axis plot units are set to energies or wavelengths,
ignore and notice will accept floating-point input assumed to be in those same units:

Plot.xAxis = "nm"

Ignore channel bins corresponding to 15.0 to 20.0 nm
wavelengths:

s1.ignore("15.-20.")

The currently noticed channel ranges are displayed for each spectrum in the All-
Data.show() output. You can also get a list of the individual noticed channel num-
bers from Spectrum’s noticed attribute:

>>> s1.noticed

[3,4,5,7,8,10]

To apply ignore and notice commands to ALL loaded spectra, call the methods from
the global AllData object. To apply to a subset of loaded spectra, add a range specifier
to the left of the colon:

These apply to all loaded spectra

AllData.ignore("100-120, 150-200")

AllData.notice("all")

AllData.ignore("bad")

These apply to a subset of loaded spectra

AllData.ignore("1-3: 60-65")

AllData.notice("2-∗∗:50-60")

5.3 Models

5.3.1 Model With Multiple Data Groups

When a model is defined and spectra are assigned to multiple data groups, PyXspec
will generate a Model object copy for each data group (assuming the spectra also have
responses attached). So if:

m1 = Model("wa∗ga")

AllData("file1 2:2 file2")

then there are 2 Model objects for the model definition wabs∗gaussian. The variable
m1 is set to the object belonging to data group 1, and to get the object for data group 2
do:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.3 Models 20

m2 = AllModels(2)

m1 and m2 will each have the same set of Component and Parameter objects.

Parameters can be accessed directly by index from the Model objects, and these indices
are numbered from 1 to nParameters for ALL data group copies. So for the "wa∗ga"
example above:

p = m1(2) # Returns the 2nd (’LineE’) parameter from the
model for data group 1.

p = m2(2) # Returns the 2nd (’LineE’) parameter from the
model for data group 2.

p = m2(6) # Wrong!!

5.3.2 Defining Multiple Models

Beginning with XSPEC12, it became possible to assign multiple sources to spectra,
and each source may have its own model function definition. To keep track of multiple
model definitions, XSPEC requires that you assign them names. In PyXspec, the model
name and source number are supplied as additional arguments to the Model __init__
function:

Define a model named "alpha" assigned to source 1

m_1_1 = Model("wa∗po","alpha")

Define a model named "beta" assigned to source 2

m_2_1 = Model("const∗bbody","beta",2)

(In both of these cases, the returned object belongs to
data group 1)

[As with Standard XSPEC, to define a model for source numbers > 1 you first must
load a detector response for the source. See "Background, Response, and Arf" in the
previous section.]

Note that in all previous examples in this tutorial, we have been using unnamed models
which were assigned to source 1. Named models and source numbers may also be
defined directly into the AllModels container by passing in a tuple:

Define a model named "defn1" assigned to source 1

AllModels += ("wa∗po", "defn1")

Define a model named "defn2" assigned to source 2

AllModels += ("const∗bbody", "defn2", 2)

This replaces "defn1" with an unnamed model for source
1

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.3 Models 21

AllModels += "wa∗gaussian"

and from which Model objects can be retrieved:

Get the "defn2" Model object for data group 1

m_2_1 = AllModels(1,"defn2")

...and for data group 2

m_2_2 = AllModels(2,"defn2")

To view all current source number and model assignments, see the AllModels.sources
attribute, which displays a dictionary of the [source number]:[model name] pairs.

To remove model definitions:

Remove all data group copies of "defn2"

AllModels -= "defn2"

Remove all data group copies of the unnamed model (defined
above as "wa∗gaussian")

AllModels -= ""

Remove all copies of ALL model definitions

AllModels.clear()

5.3.3 Component And Parameter Access Part 2

When PyXspec constructs a Model object, it immediately adds to it an attribute of type
Component for every component in the model expression. The attribute has the same
(full) name as the component in the original expression, allowing you to access it as:

m = Model("wa∗pow")

c2 = m.powerlaw

However when a model contains multiple copies of the same component, this type of
access becomes ambiguous. So to distinguish among copies, for any component mak-
ing its 2nd or more appearance (from left to right), PyXspec will append "_n" to the
attribute name where n refers to the component’s position in the expression (again from
left to right). Or to put it more simply:

m = Model("wa∗po + po")

This gets the leftmost powerlaw component

pow1 = m.powerlaw

This gets the rightmost, which is the 3rd component in
the expression.

pow2 = m.powerlaw_3

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.3 Models 22

The Model object also stores an attribute which is a just a list of the names of its
constituent Component attributes:

>>> m.componentNames

[’wabs’, ’powerlaw’, ’powerlaw_3’]

This may be useful for example if writing a loop to access each of a model’s components.
Similarly Component objects have a parameterNames attribute, listing the names of
their constituent Parameter attributes:

>>> m.powerlaw.parameterNames

[’PhoIndex’, ’norm’]

5.3.4 Gain Parameters (Response Models)

Response Models differ from the regular kind in that they act on a Response rather than
directly calculate a flux. At present there is only one kind of Response Model in Xspec,
and this is gain. gain is a built-in attribute of all Response objects, and is of the class
type RModel. It has 2 parameters for adjusting the energies of a Response: slope
and offset. Gain parameters are initially off by default, but may be turned on simply by
setting either one. For example:

s = Spectrum("file1")

The spectrum’s response has a gain attribute that is
not in use,

which is the equivalent of having a slope fixed at 1.0
and offset = 0.0.

r = s.response

Setting either the slope or offset turns the gain on
for this response.

Both slope and offset will now be fit parameters.

r.gain.slope = 1.05

The previous setting leaves the offset at 0.0. Now
we’ll change it.

r.gain.offset = .05

You can set slope and offset at the same time using -
Response’s setPars method.

r.setPars(.99, .03)

slope and offset are Parameter objects and therefore have the same interface as reg-
ular model parameters:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.3 Models 23

Modify the parameter’s auxilliary values

r.gain.offset = ".08„.01,.01,.5,.5"

Set a parameter link

r.gain.offset.link = ".005∗1"

To remove the response fit parameters and return the Response back to its original
state, call the gain.off() method:

This deletes the slope and offset parameters.

Any references to them become invalid.

r.gain.off()

5.3.5 Flux Calculations

To perform a Standard XSPEC flux or lumin calculation, call the AllModels methods
calcFlux or calcLumin respectively:

AllModels.calcFlux(".3 1.0")

AllModels.calcFlux(".1 10.0 err")

AllModels.calcLumin(".1 10. .05 err")

As in Standard XSPEC the results will be stored with the currently loaded spectra:

>>> s1 = AllData(1)

>>> s1.flux

(5.7141821510911499e-14, 0.0, 0.0, 4.0744161672429196e-05,
0.0, 0.0)

>>> s1.lumin

(30.972086553634504, 0.0, 0.0, 0.056670019567301853, 0.0,
0.0)

unless there are no spectra, in which case the results are stored with the model object:

>>> AllModels(1).flux

(5.6336924399373855e-10, 0.0, 0.0, 0.05929616315253175,
0.0, 0.0)

5.3.6 Local Models in C/C++/Fortran

In Standard XSPEC, local model libraries are built with the initpackage comamnd and
then loaded with lmod. The AllModels container supplies both of these functions for
doing the same thing in PyXspec:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.3 Models 24

AllModels.initpackage("myLocalMods","lmodel.dat")

AllModels.lmod("myLocalMods")

By default this looks in the directory set by the LOCAL_MODEL_DIRECTORY variable
in your ∼/.xspec/Xspec.init start-up file. You can override this by giving these functions
an absolute or relative path as a dirPath keyword argument (see the Class guide for
details).

5.3.7 Local Models in Python

You can also write model functions in Python and insert them into the XSPEC library
with the AllModels addPyMod method. You simply define a function with 3 arguments
for energies, parameters, and flux. For example a powerlaw model function might look
like:

def lpow(engs, params, flux):
for i in range(len(engs)-1):

pconst = 1.0 - params[0]
val = math.pow(engs[i+1],pconst)/pconst - math.pow(engs[i],pconst)/pconst
flux[i] = val

XSPEC will pass tuples containing the energy and parameter values to your function.
For the flux array, it will pass a list pre-sized to nE-1, where nE is the size of the energies
array. Your model function should fill in this list with the proper flux values. (For additional
optional arguments to your model function, please see the documentation for the add-
PyMod function.)

The second thing you must define is a tuple containing the parameters’ information
strings, one string for each parameter in your model. This is equivalent to the parameter
strings you would define in a ’model.dat’ file when adding local models in standard XS-
PEC, and it requires the same format. (See Appendix C of the XSPEC manual for more
details.) So with the powerlaw function above which takes just 1 parameter, you might
define a tuple as:

powInfo = ("phoIndex \"" 1.1 -3. -2. 9. 10. 0.01",)

Note the need for the trailing comma when there’s just one parameter string. This is to
let Python know that powInfo is a tuple type and not a string.

Once you’ve defined your function and parameter information, simply call:

AllModels.addPyMod(lpow, powInfo, ’add’)

The 3rd argument tells XSPEC the type of your model function (’add’, ’mul’, or ’con’).
After this call your function will be added to the list of available model components, which
you can see by doing ’Model.showList()’. Your model will show up with the same name
as your original Python function (’lpow’), and is ready for use in future Model definitions.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.4 Fitting 25

5.4 Fitting

5.4.1 Error

The error command is implemented through Fit , and the results are stored with the
chosen Parameter object(s). The error attribute stores a tuple containing the low and
high range values for the parameter, and the 9-letter status string to report problems
incurred during the error calculation.

Estimate the 90% confidence range for the 4th parameter

>>> Fit.error("2.706 4")

>>> par4 = AllModels(1)(4)

>>> par4.error

(0.11350354517707145, 0.14372981075906774, ’FFFFFFFFF’)

5.4.2 Query

During a Fit.perform() operation, the default is to query the user whenever the
fit has run the maximum number of iterations, as set by the Fit.nIterations at-
tribute. You can change this behavior with the query attribute:

When nIterations is reached, continue the fit without
stopping to query.

Fit.query = "yes"

Stop fit at nIterations and do not query.

Fit.query = "no"

Query the user when nIterations is reached.

Fit.query = "on"

5.4.3 Steppar

The Standard XSPEC steppar command is also implemented through the global Fit
object. You supply it with a string following the same steppar command syntax rules.
For example:

Step parameters 1 and 2 through the given range values

over a 10x10 2-D grid.

Fit.steppar("1 20. 30. 10 2 .05 .08 10")

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.5 Fakeit 26

5.5 Fakeit

PyXspec provides access to standard XSPEC’s fakeit command, which is for creating
spectra with simulated data. It is called through the AllData fakeit method:

AllData.fakeit(nSpectra=1, settings=None, applyStats=-
True, filePrefix="")

NOTE: If AllData.fakeit is run when spectra are currently loaded, it will follow the
same rules as the standard XSPEC fakeit function: It will REMOVE ALL pre-existing
spectra and replace each one with a simulated spectrum (even if nSpectra is less than
the number originally loaded).

As those familiar with standard fakeit know, the user is normally prompted for quite a bit
of additional information needed to generate the fakeit files. However the goal here is
to have NO additional prompting, and that requires that all information must be entered
as arguments to the AllData fakeit method call. This is done by passing objects of the
FakeitSettings class to AllData.fakeit, as we’ll show further below.

NOTE: Unless stated otherwise, assume all spectra are OGIP type-1 (1 spectrum per
file).

For the simplest of cases, you don’t need to create any FakeitSettings objects. Just
pass in the number of fake spectra you’d like to create:

Create 3 fake spectra using only default settings.

AllData.fakeit(3)

The fakeit function will then create a default FakeitSettings object for each of the 3
spectra. By default, a FakeitSettings object will have empty strings for all of its at-
tributes, and these are handled differently depending on whether the fake spectrum is
replacing a currently loaded spectrum, or creating one from scratch.

5.5.1 From Existing Spectra

When replacing an existing spectrum, FakeitSettings attributes with empty strings will
simply take their value from the original spectrum. Also note that the response and
arf settings for the original spectrum CANNOT be modified for the fakeit spectrum. If
a name is filled in for either of these attributes, it will be ignored. If you wish to modify
these, you can make the change to the original spectrum prior to calling fakeit. [The one
exception is when the original spectrum has no response, in which case the response
attribute MUST be filled in.] If the fileName attribute is empty, XSPEC will generate a
default output name derived from the original file name.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.5 Fakeit 27

5.5.2 From Scratch

When creating from scratch, an empty string implies "none" for the arf and background,
1.0 for exposure and correction, and XSPEC’s default dummy response for the response
attribute. If the fileName attribute is empty, XSPEC will generate a default output file
name based on the response name, and it will include an auto-incremented index to
prevent multiple output files from overwriting each other.

5.5.3 FakeitSettings Objects

To create a fake spectrum with anything other than default settings, you must supply
a FakeitSettings object for that spectrum. The FakeitSettings attributes are: re-
sponse, arf, background, exposure, correction, backExposure, and fileName. All are
string types, though exposure, backExposure, and correction can also be entered as
floats. Attributes can be set upon object construction, or anytime afterwards:

fs1 = FakeitSettings("response1.rsp", exposure = 1500.0)

fs1.background = "back1.pha"

A new FakeitSettings object can also be made by copying an existing one:

fs2 = FakeitSettings(fs1)

And now pass the objects to the fakeit method, either in a list, dictionary, or as a single
object:

Apply settings to fakeit spectra 1 and 2:

AllData.fakeit(2,[fs1,fs2])

Apply setting to fakeit spectrum 1, use defaults for
spectrum 2:

AllData.fakeit(2, fs1)

Apply settings to fakeit spectra 2 and 4, use defaults
for 1 and 3:

settingsDict = {2:fs1, 4:fs2}

AllData.fakeit(4, settingsDict)

Create 4 fakeit spectra from the same settings object:

settingsList = 4∗[fs1]

AllData.fakeit(4, settingsList)

The remaining 2 arguments to the AllData.fakeit function are for choosing
whether to apply statistical fluctuations (default = True), and whether to add an optional
prefix string to the names of all output files.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.6 Monte Carlo Markov Chains (MCMC) 28

5.5.4 OGIP Type-2 Files

With OGIP type-2 files, multiple spectra may be placed in a single file. The important
thing to recognize when generating type-2 fakeit files is that the exposure, correction,
backExposure, and fileName attributes apply to the output files and not the individual
spectra. Therefore these settings will be ignored for all but the first spectrum in a file.
For example:

Start with 4 spectra loaded, in 2 type-2 files:

AllData("myDataFile1.pha{1-2} myDataFile2.pha{7-8}")

Create settings for the 4 fake spectra that will be
generated from these:

fs1 = FakeitSettings(background="back1.pha", exposure=250.)

The exposure setting in fs2 will be ignored!!!

fs2 = FakeitSettings(background="back2.pha", exposure
100.)

fs3 = FakeitSettings(fileName="myFakeitFile_2.pha")

fs4 = FakeitSettings(fs3)

The following change will be ignored!!!

fs4.fileName = "myFakeitFile_3.pha"

Now generate the fakeit files: AllData.fakeit(4, [fs1,fs2,fs3,fs4])

The above will generate 4 fakeit spectra, placed in 2 type-2 files. The exposure setting
for spectrum 2 and the fileName setting for spectrum 4 will be ignored. Those values
are only set by spectra 1 and 3.

For more fakeit details and examples, please check:

>>>help(FakeitSettings)

>>>help(DataManager.fakeit)

5.6 Monte Carlo Markov Chains (MCMC)

All MCMC operations are handled either by objects of class Chain, or the global All-
Chains container object. To create a new chain based on the current fit parameters,
simply create a Chain object by passing it an output file name:

c1 = Chain("chain1.fits")

The above call creates the file "chain1.fits", performs an MCMC run using the default
burn, fileType, length, proposal, rand, and temperature values, and automatically places
the new object in the AllChains container. These default settings are stored as attributes

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.6 Monte Carlo Markov Chains (MCMC) 29

of AllChains:

Ensure that new chains will burn the first 100 iterations,
will

have length 1000, and will use the proposal "gaussian
fit"

AllChains.defBurn = 100

AllChains.defLength = 1000

AllChains.defProposal = "gaussian fit"

c2 = Chain("chain2.fits")

You can also override the AllChains default settings by passing additional arguments to
Chain upon construction:

Length will be 2000 for this chain, use defaults for
all other settings.

c3 = Chain("chain3.fits", runLength = 2000)

The new chain objects will then store their own settings as attributes:

>>>c2.burn

100

>>>c2.runLength

1000

>>>c3.runLength

2000

All of a chain object’s attributes will be displayed when calling its show() method.

To append a new run to an existing chain object, call the object’s run() method. -
The appending run will use the object’s current attribute settings, and not the AllChains
default settings:

This will append a run of length 3000 to the c3 chain
object, and with a

Metropolis-Hastings temperature of 50.0:

c3.runLength = 3000

c3.temperature = 50.0

c3.run()

>>> c3.totalLength

5000

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.6 Monte Carlo Markov Chains (MCMC) 30

To overwrite rather than append to an existing chain object, call run with its append
argument set to False:

This erases the results of any previous runs for object
c3.

c3.run(False)

>>> c3.totalLength

3000

New chains are loaded into AllChains by default, but you can unload or reload them
using the AllChains arithmetic operators:

Chain c2 may be unloaded by passing its chain index
number

AllChains -= 2

OR by passing the object itself

AllChains -= c2

2 ways to remove ALL chains

AllChains -= ’∗’

AllChains.clear()

Reload an existing chain object

AllChains += c2

Load a chain from an existing chain file

AllChains += "earlierChain.fits"

Create a new chain, to be stored in file "chain4.fits"

AllChains += "chain4.fits"

As with Standard XSPEC, unloading a chain will leave the chain’s file intact. It merely re-
moves the chain from XSPEC’s calculations. To display information about the currently
loaded chains, call AllChains.show().

You may also get a chain object from the container at any time by passing it an index
number:

Retrieve a chain object for the 4th chain in the container

c4 = AllChains(4)

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.7 Plotting 31

5.7 Plotting

All of the plotting options available in Standard XSPEC’s setplot command are now
implemented as attributes of the Plot object. Some of these are mentioned in the Quick
Version of the tutorial, and please see the PlotManager class reference for the complete
guide.

One setting of particular interest is the commands attribute. This is a tuple of user-
entered PLT command strings which are added to XSPEC’s auto-generated com-
mands when performing a plot, and is modified through Plot ’s addCommand and del-
Command methods. For example, to enter a PLT command to place an additional label
at the specified coordinates on the plot:

Plot.addCommand("label 1 pos 10 .05 \"Another Label"")

To view the currently loaded commands:

print Plot.commands

and to remove the 3rd command from the tuple:

Plot.delCommand(3)

5.8 XSPEC Settings

Most of the internal switches set through Standard XSPEC’s xset command are now
set through attributes of the global Xset object. Examples:

Xset.abund = "angr"

Xset.cosmo = "50 .5 0."

Xset.xsect = "bcmc"

Xset also provides the methods addModelString and delModelString to set the
<string name>,<string value> pairs which are used by certain models. The <string
name> argument is case-insensitive.

Xset.addModelString("APECROOT","1.3.1")

Xset.addModelString("APECTHERMAL","yes")

Xset.delModelString("neivers")

The entire collection of <name>,<value> pairs may be set or retrieved with the -
Xset.modelStrings attribute:

Replace all previous entries with a new dictionary

Xset.modelStrings = {"neivers":"1.1", "apecroot":"1.3.1"}

Clear out all entries:

Xset.modelStrings = {}

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.9 Logging And XSPEC Output 32

Xset.show() will display all of the current settings including the current <string
name>,<string value> pairs.

5.9 Logging And XSPEC Output

The Xset object provides attributes and methods for controlling output chatter level and
for creating log files:

Get/Set the console chatter level

ch = Xset.chatter

Xset.chatter = 10

Get/Set the log chatter level

lch = Xset.logChatter

Xset.logChatter = 20

Create and open a log file for XSPEC output

This returns a Python file object

logFile = Xset.openLog("newLogFile.txt")

Get the Python file object for the currently opened log

logFile = Xset.log

Close XSPEC’s currently opened log file.

Xset.closeLog()

5.10 Exceptions And Error Handling

PyXspec utilizes the standard Python try/except/raise mechanism for handling and
reporting errors. In this early version, only exception objects of the class Exception
are ever raised. In the future other (more specific) error classes may be used, but they
should always be derived from Exception. So you can catch all PyXspec exceptions
with code such as:

try:
Only 4 spectra are currently loaded
s = xspec.AllData(5)

except Exception, msg:
print msg

which will print the error message:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.11 Adding Attributes To PyXspec Objects 33

Error: Spectrum index number is out of range: 5

PyXspec raises errors in a variety of situations, such as for invalid input argument syn-
tax, or for input which is invalid within the context of the call (as in the example above).
It can also raise exceptions if you try to rebind a class attribute when such modification
is not permitted.

5.11 Adding Attributes To PyXspec Objects

A particularly novel feature of Python (in comparison with say C++) is that it allows you
to create new attributes "on the fly". The attributes don’t have to have been part of the
original class definition:

class C:
pass

x = C()
x.pi = 3.1416

The downside of course is that spelling or case sensitive errors become much harder to
detect. For example, with PyXspec’s Plot object:

Plot.yLog = True # Correct

Plot.ylog = True # Wrong!

In the second case, standard Python will simply add a new attribute named "ylog" to
Plot , and this will have no effect on the actual plot since PyXspec is only looking at
"yLog".

So operating under the assumption that this downside outweighs the benefits, we’ve
decided to disable the ability to add new attributes to PyXspec class objects. A mis-
spelling or case error will instead raise an Exception object. And since some users may
genuinely wish to add their own attributes to PyXspec classes, this default behavior may
be overridden by toggling the Xset.allowNewAttributes flag:

s = Spectrum("dataFile.pha")

s.myNewIndex = 10 # Error: Will raise an exception

Xset.allowNewAttributes = True

s.myNewIndex = 10 # OK

.

. # Can add new attributes to any PyXspec object,

. # but attribute spelling errors will go undetected.

.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

5.12 Using With Other Packages 34

Xset.allowNewAttributes = False

5.12 Using With Other Packages

One of the primary benefits of PyXspec is that it makes it much easier to use XSPEC
data and results in 3rd party packages. For example you can bypass XSPEC’s built-in
plotting functions in favor of a Python plotting library such as Matplotlib:

#!/usr/bin/python

from xspec import ∗

import matplotlib.pyplot as plt

PyXspec operations:

s = Spectrum("file1.pha")

m = Model("wa∗po")

Fit.perform()

Plot using Matplotlib:

plt.plot(s.noticed, s.values, ’ro’, s.noticed, m.folded(1))

plt.xlabel(’channels’)

plt.ylabel(’counts/cm∧2/sec/chan’)

plt.savefig(’myplot’)

The above code produces a Matplotlib plot of the spectral data and folded model vs.
channels (similar to what you get with Standard XSPEC’s "plot data" command). -
It makes use of the Spectrum object’s noticed attribute to pass a list of the chan-
nel numbers, and the values attribute (a tuple) to pass the spectral data values in
counts/cm∧2/s. The folded model values are obtained as a list by calling the Model
object’s folded method with a spectrum number argument.

6 What’s Missing

Python equivalents for these standard XSPEC commands are not yet implemented:

• hardcopy

• identify

• margin

• mdefine

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

7 Class Index 35

• Tcl script commands: addline, lrt, modid, multifake, rescalecov, simftest, writefits

The following commands perform functions which are not applicable to the currently
intended design and usage of PyXspec, and therefore are not likely to be implemented
in the near future:

• addcomp

• autosave

• delcomp

• editmod

• save

• script

7 Class Index

7.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Background 35

Chain 38

ChainManager 41

Component 44

DataManager 45

FakeitSettings 50

FitManager 54

Model 62

ModelManager 67

Parameter 75

PlotManager 79

Response 86

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8 Class Documentation 36

RModel 90

Spectrum 92

XspecSettings 102

8 Class Documentation

8.1 Background Class Reference

Public Member Functions

• def __init__

Public Attributes

• areaScale

The Background area scaling factor (GET only).

• backScale

The Background back scaling factor (GET only).

• exposure

The exposure time keyword value [float] (GET only).

• fileName

The spectrum’s file name [string] (GET only).

• isPoisson

Boolean flag, True if spectrum has Poisson errors (GET only).

• values

Tuple of floats containing the background rates array in counts/cm∧2-sec (GET only).

• variance

Tuple of floats containing the variance of each channel (GET only).

8.1.1 Detailed Description

Background spectral data class.

Public instance attributes (implemented as properties):

areaScale -- The Background area scaling factor (GET only).
Either a single float (if file stores it as a keyword),

or a Tuple of floats (if file stores column).

backScale -- The Background back scaling factor (GET only).
Either a single float (if file stores it as a keyword),

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.1 Background Class Reference 37

or a Tuple of floats (if file stores column).

exposure -- The exposure time keyword value [float] (GET only).

fileName -- The spectrum’s file name [string] (GET only).

isPoisson -- Boolean flag, True if spectrum has Poisson errors
(GET only).

values -- Tuple of floats containing the background rates array in
counts/cm^2-sec (GET only).

variance -- Tuple of floats containing the variance of each
channel (GET only).

8.1.2 Constructor & Destructor Documentation

8.1.2.1 def init (self, backTuple, parent)

Construct a Background object.

Intended for creation by a Spectrum object only.
The parent arg should be the Spectrum object’s self pointer.

8.1.3 Member Data Documentation

8.1.3.1 areaScale

The Background area scaling factor (GET only).

Either a single float (if file stores it as a keyword),
or a Tuple of floats (if file stores column).

8.1.3.2 backScale

The Background back scaling factor (GET only).

Either a single float (if file stores it as a keyword),
or a Tuple of floats (if file stores column).

8.1.3.3 exposure

The exposure time keyword value [float] (GET only).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.2 Chain Class Reference 38

8.1.3.4 fileName

The spectrum’s file name [string] (GET only).

8.1.3.5 isPoisson

Boolean flag, True if spectrum has Poisson errors (GET only).

8.1.3.6 values

Tuple of floats containing the background rates array in counts/cm∧2-sec (GET only).

8.1.3.7 variance

Tuple of floats containing the variance of each channel (GET only).

The documentation for this class was generated from the following file:

• spectrum.py

8.2 Chain Class Reference

Public Member Functions

• def __init__
• def run
• def show

Public Attributes

• burn

The number of steps that will be thrown away prior to storing the chain [int].

• runLength

The length of chain to be added during the next run [int].

• proposal

The proposal distribution and source of covariance information to be used for the next
run [string].

• rand

Determines whether chain start point will be randomized (True) or taken from the cur-
rent parameters (False).

• temperature

The temperature parameter used in the Metropolis-Hastings algorithm for the proposal
acceptance or rejection [float].

• fileName

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.2 Chain Class Reference 39

Chain output file name.
• fileType

Output format of the chain file [string].
• totalLength

The cumulative length of the chain [int].

8.2.1 Detailed Description

Monte Carlo Markov Chain class.

Public instance attributes:

GET-only attributes:

fileName -- Chain output file name.
fileType -- Output format of the chain file [string].

Will be either "fits" (the default), or "ascii".
totalLength -- The cumulative length of the chain [int].

This will increase every time a run is performed.

The following attribute settings will apply to the NEXT run for this
chain. The burn and rand settings are irrelevant if run is performing
an appending operation.

runLength -- The length of chain to be added during the next run [int].
proposal -- The proposal distribution and source of covariance

information to be used for the next run [string].
Examples: "gaussian fit", "cauchy fit",

"gaussian chain", etc.
See the "chain" command in the standard XSPEC manual
for more information.

temperature -- The temperature parameter used in the Metropolis-Hastings
algorithm for the proposal acceptance or rejection
[float].

burn -- The number of steps that will be thrown away prior to
storing the chain [int].

rand -- Determines whether chain start point will be randomized
(True) or taken from the current parameters (False).

8.2.2 Constructor & Destructor Documentation

8.2.2.1 def init (self, fileName, fileType = None, burn = None, runLength = None,
proposal = None, rand = None, temperature = None)

Construct a chain object, perform a run, and load into AllChains
container.

The only required argument is fileName. All other arguments will
take their default values from the current settings in the AllChains
container.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.2 Chain Class Reference 40

8.2.3 Member Function Documentation

8.2.3.1 def run (self, append = True)

Perform a new chain run, either appending to or overwriting an
existing chain.

append -- If this is set to True the new run will be appended.
If False, the new run will overwrite. Note that the burn
and rand settings do not apply when appending.

8.2.3.2 def show (self)

Display current settings of Chain object’s attributes.

8.2.4 Member Data Documentation

8.2.4.1 burn

The number of steps that will be thrown away prior to storing the chain [int].

8.2.4.2 fileName

Chain output file name.

8.2.4.3 fileType

Output format of the chain file [string].

Will be either "fits" (the default), or "ascii".

8.2.4.4 proposal

The proposal distribution and source of covariance information to be used for the next
run [string].

Examples: "gaussian fit", "cauchy fit",
"gaussian chain", etc.

See the "chain" command in the standard XSPEC manual
for more information.

8.2.4.5 rand

Determines whether chain start point will be randomized (True) or taken from the current
parameters (False).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.3 ChainManager Class Reference 41

8.2.4.6 runLength

The length of chain to be added during the next run [int].

8.2.4.7 temperature

The temperature parameter used in the Metropolis-Hastings algorithm for the proposal
acceptance or rejection [float].

8.2.4.8 totalLength

The cumulative length of the chain [int].

This will increase every time a run is performed.

The documentation for this class was generated from the following file:

• chain.py

8.3 ChainManager Class Reference

Public Member Functions

• def __init__
• def __call__
• def __iadd__
• def __isub__
• def clear
• def show
• def stat

Public Attributes

• defBurn

Default burn length for new Chain objects (orig = 0).

• defFileType

Default output file format (orig = "fits").

• defLength

Default chain length (orig = 100).

• defProposal

Default chain proposal (orig = "gaussian fit").

• defRand

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.3 ChainManager Class Reference 42

Default randomization setting (orig = False).

• defTemperature

Default chain temperature (orig = 1.0).

8.3.1 Detailed Description

Monte Carlo Markov Chain container.

This is a singleton - only 1 instance allowed

Public instance attributes:

These are the values which will be used when creating new Chain objects,
unless they are explicitly overridden as arguments to the Chain class
constructor. For more detail, see the descriptions for the
corresponding attributes in the Chain class doc.

defBurn -- Default burn length for new Chain objects (orig = 0).
defFileType -- Default output file format (orig = "fits").
defLength -- Default chain length (orig = 100).
defProposal -- Default chain proposal (orig = "gaussian fit").
defRand -- Default randomization setting (orig = False).
defTemperature -- Default chain temperature (orig = 1.0).

8.3.2 Constructor & Destructor Documentation

8.3.2.1 def init (self)

8.3.3 Member Function Documentation

8.3.3.1 def call (self, index)

Get a Chain object from the AllChains container.

index -- The index of a currently loaded chain file. The list
of currently loaded chains can be seen with the
AllChains.show() method. The valid range is:
1 <= index <= nLoadedChains.

Note that the returned Chain object’s modifiable attributes will
be initialized with the current AllChains def<attribute> settings.

Example:
Load 2 chains from pre-existing files:
AllChains += "chain1.fits"
AllChains += "chain2.fits"
and get a Chain object for the 2nd chain:
c2 = AllChains(2)

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.3 ChainManager Class Reference 43

8.3.3.2 def iadd (self, chain)

Load a pre-existing chain into the AllChains container.

Argument may be a currently existing chain object which had been
unloaded earlier:

AllChains += myChain1
the filename of an existing chain file:

AllChains += "chainFile.fits"
or the filename of a new chain:

AllChains += "newChainFile.fits" # This will also perform a chain
run using the default settings.

8.3.3.3 def isub (self, chain)

Unload one or more chain objects from container.

Argument may either be a chain object:
AllChains -= myChain1

a filename:
AllChains -= "chainFile.fits"

the chain’s current index [int] in the AllChains container:
AllChains -= 2

or a ’*’ to unload ALL chains (equivalent to AllChains.clear()):
AllChains -= ’*’

8.3.3.4 def clear (self)

Unload all chains from container

8.3.3.5 def show (self)

Display information for current attributes and loaded chains.

8.3.3.6 def stat (self, parIdx)

Display statistical information on a particular chain parameter.

parIdx -- The parameter index number, including optional model
name: [<modName>:]<idx>. May be entered as a string
or int (if no model name).

8.3.4 Member Data Documentation

8.3.4.1 defBurn

Default burn length for new Chain objects (orig = 0).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.4 Component Class Reference 44

8.3.4.2 defFileType

Default output file format (orig = "fits").

8.3.4.3 defLength

Default chain length (orig = 100).

8.3.4.4 defProposal

Default chain proposal (orig = "gaussian fit").

8.3.4.5 defRand

Default randomization setting (orig = False).

8.3.4.6 defTemperature

Default chain temperature (orig = 1.0).

The documentation for this class was generated from the following file:

• chain.py

8.4 Component Class Reference

Public Member Functions

• def __init__
• def __setattr__

Public Attributes

• name

The full name of the Component (get only).

• parameterNames

List of Component’s parameter names (get only).

8.4.1 Detailed Description

Model component class.

Public instance attributes:

name -- The full name of the Component (get only).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.5 DataManager Class Reference 45

<parameters> -- Component contains an attribute of type Parameter for
every parameter in the component. The attribute
name is the same as the parameter name in xspec.

parameterNames -- List of Component’s parameter names (get only).

8.4.2 Constructor & Destructor Documentation

8.4.2.1 def init (self, compName, parNames)

Component constructor.

Intended for creation by Model objects only.

compName -- The full xspec component name. This will also
be the name of the attribute in the model object

parNames -- List containing component’s parameter names.

8.4.3 Member Function Documentation

8.4.3.1 def setattr (self, attrName, value)

8.4.4 Member Data Documentation

8.4.4.1 name

The full name of the Component (get only).

8.4.4.2 parameterNames

List of Component’s parameter names (get only).

The documentation for this class was generated from the following file:

• model.py

8.5 DataManager Class Reference

Public Member Functions

• def __init__
• def __call__
• def __isub__
• def __iadd__
• def clear

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.5 DataManager Class Reference 46

• def diagrsp
• def dummyrsp
• def fakeit
• def ignore
• def notice
• def removeDummyrsp
• def show

Public Attributes

• nGroups

The number of data groups [int].

• nSpectra

The number of loaded spectra [int].

8.5.1 Detailed Description

Spectral data container.

This is a singleton - only 1 instance allowed

Public instance attributes, GET only unless stated otherwise.

nGroups -- The number of data groups [int].
nSpectra -- The number of loaded spectra [int].

8.5.2 Constructor & Destructor Documentation

8.5.2.1 def init (self)

8.5.3 Member Function Documentation

8.5.3.1 def call (self, expr)

DataManager get or set spectra.

Get:
expr -- An integer referring to the spectrum index number. Returns

the spectrum, or raises an Exception if the integer is out
of range.

Set:
expr -- A string following the same syntax rules as Xspec’s

traditional "data" command handler.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.5 DataManager Class Reference 47

8.5.3.2 def iadd (self, spectra)

Add 1 spectrum to the data container.

spectra - the data filename string.

8.5.3.3 def isub (self, spectra)

Remove 1 or all spectra from the data container.

spectra - either a single spectrum index number (int), a single
Spectrum object, or the string "*" to remove all.

8.5.3.4 def clear (self)

Remove all spectra from the data container.

8.5.3.5 def diagrsp (self)

Diagonalize the current response matrix for ideal response.

All currently loaded responses will be replaced with diagonal
response matrices. The energy range and channel binning
information are retained from the original response, as is the
effective area. The channel values are mapped directly into the
corresponding energy ranges to simulate a detector with perfect
spectral resolution.

To remove diagonal responses and restore the originals, call the
AllData.removeDummyrsp() method.

8.5.3.6 def dummyrsp (self, lowE = None, highE = None, nBins = None, scaleType =
None, chanOffset = None, chanWidth = None)

Create a dummy response and apply it to all spectra.

Input arguments, all are optional:

lowE - Input response energy lower bound, in keV. [float]
highE - Input response energy higher bound, in keV. [float]
nBins - Number of bins into which the energy range is divided

[int].
scaleType - "log" or "lin" [string]
chanOffset - Starting value of dummy channel energies. [float]
chanWidth - Energy width of the channel bins. [float]

If this is set to 0, the dummy response
can only be used for evaluating model arrays,
and not for fitting to spectra.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.5 DataManager Class Reference 48

Examples:

All values are optional, use keywords to enter values
non-consecutively. Unspecified values revert to the
current defaults.
AllData.dummyrsp(.3, 30., 100, chanWidth=.5)
AllData.dummyrsp(highE = 50.)
AllData.dummyrsp(.1,10.,100,"lin",.0, 1.0)

Initial defaults: lowE = .1, highE = 50., nBins = 50, scaleType = "log"
chanOffset = .0, chanWidth = .0

The defaults for lowE, highE, nBins, scaleType, and chanOffset will be
modified for each explicit new entry. chanWidth always defaults to 0.

To remove dummy responses and restore actual responses (if any), call
the removeDummyrsp() method.

To apply a dummy response to just a single spectrum, use the
Spectrum.dummyrsp method.

8.5.3.7 def fakeit (self, nSpectra = 1, settings = None, applyStats = True, filePrefix =
"", noWrite = False)

Produce spectra with simulated data using XSPEC’s fakeit command.

Note that if this method is run when spectra are currently loaded, it
will follow the same rule as the standard XSPEC fakeit function:
It will REMOVE ALL pre-existing spectra and replace each one with
a simulated spectrum (even if nSpectra is less than the number
originally loaded).

All arguments are optional:

nSpectra -- The number of fake spectra to produce. [int]

If there are nOrig pre-existing spectra loaded at the
time this function is called and nSpectra < nOrig,
nSpectra will be RESET to nOrig (see note above).

If nSpectra == nOrig, then each of the fake spectra
will use the settings from the respective original
spectra for their defaults (see the FakeitSettings
class description).

If nSpectra > nOrig, then settings for the fake spectra
numbered above nOrig will not be based on pre-existing
spectra (if any).

settings -- A collection of 0 to nSpectra FakeitSettings objects,
which may be entered as a list, a dictionary, a
single FakeitSettings object, or None.

If settings is a dictionary, the key,value pairs should
be the spectrum index number (1 is lowest) and the
FakeitSettings object.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.5 DataManager Class Reference 49

This function will match up FakeitSettings objects
1-to-1 with the nSpectra fake spectra to be created.

If user provides FEWER than nSpectra FakeitSettings
objects, fakeit will generate the necessary additional
objects with their default settings.

If MORE than nSpectra FakeitSettings objects are
provided, the extra objects will be ignored.

applyStats -- If set to True, statistical fluctuations will be
included in the generation of fake spectra. [bool]

filePrefix -- Optional string to attach as a prefix to default fakeit
output file names. Note that this only applies when
using the default file names. If a file name is
explicitly entered in the FakeitSettings.fileName
attribute, it will not make use of this.

noWrite -- If set to True, no fakeit output files will be generated.
Default is False. [bool]

Examples:

Assume no data is loaded, but a model is defined:

AllData.fakeit()
Creates 1 fake spectrum using the default FakeitSettings object,
which has all input strings empty. So it will use XSPEC’s internal
dummy response and its output file name will be dummy_rsp_1.fak.

Now assume AllData contains 2 spectra PRIOR to running EACH of the
following commands, then:

AllData.fakeit()
Creates 2 fake spectra with all settings (response, arf,
background, exposure, corrscale, backExposure, filenames) based
on the original spectra. The original 2 spectra are removed from
AllData.

AllData.fakeit(3)
Creates the first 2 spectra as above. The 3rd fake spectrum is
based on the default FakeitSettings object and its output filename
will be dummy_rsp_3.fak

fs = FakeitSettings(background="back1.pha", exposure=2000.0)
sl = 3*[fs]
AllData.fakeit(3, sl)
Same as above, but all 3 fake spectra will have a background file
based on back1.pha, and exposure time = 2000.0 sec.

AllData.fakeit(3, sl, False, "my_fake_")
Same as above, but no statistical fluctuations will be applied to
fake spectra, and all output files will have the "my_fake_"
prefix attached.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.5 DataManager Class Reference 50

fs1 = FakeitSettings("resp1.rmf","arf1.pha",exposure=1500.)
fs2 = FakeitSettings(fs1)
fs2.response = "resp2.rmf"
sd = {3:fs1, 5:fs2}
AllData.fakeit(5, sd)
Creates 5 fake spectra. The first 2 use the settings from the
originally loaded data. Spectra 3 and 5 use the settings from
the fs1 and fs2 FakeitSettings objects, which differ only in their
response names. Spectrum 4 uses the default FakeitSettings object.

8.5.3.8 def ignore (self, ignoreRange)

Apply an ingore channels range to multiple loaded spectra.

ignoreRange -- String specifying the spectra ranges and/or
channel ranges to ignore, or "bad".
This follows the same syntax as used in the standard
Xspec "ignore" command, except that the spectrum range
always defaults to ALL spectra.

If the channel ranges are floats rather than ints,
they will be treated as energies or wavelengths
(depending on the Plot settings).

8.5.3.9 def notice (self, noticeRange)

Apply a notice channels range to multiple loaded spectra.

noticeRange -- String specifying the spectra ranges and/or channel
ranges to notice. This follows the same syntax as
used in the standard Xspec "notice" command, except
that the spectrum range always defaults to ALL spectra.

If the numbers are floats rather than ints, they will
be treated as energies or wavelengths (depending on
the Plot settings). If the string is "all", it will
notice all channels in all spectra.

8.5.3.10 def removeDummyrsp (self)

Remove all dummy responses, restore original responses (if any).

8.5.3.11 def show (self)

Display information for all loaded spectra.

8.5.4 Member Data Documentation

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.6 FakeitSettings Class Reference 51

8.5.4.1 nGroups

The number of data groups [int].

8.5.4.2 nSpectra

The number of loaded spectra [int].

The documentation for this class was generated from the following file:

• data.py

8.6 FakeitSettings Class Reference

Public Member Functions

• def __init__

Public Attributes

• response

Name of detector response file to use for creating the fake spectrum.

• arf

Name of optional arf to use with the response.

• background

Name of optional background file to use when creating the fake spectrum.

• exposure

The fake spectrum exposure time.

• correction

Optional correction norm factor.

• backExposure

Optional background exposure time modifier.

• fileName

Optional fake spectrum output file name.

8.6.1 Detailed Description

Fakeit command settings class.

The AllData.fakeit function will apply 1 FakeitSettings object to every
fake spectrum that is to be created. If the user does not explicitly
supply their own FakeitSettings objects, AllData.fakeit will create its
own as necessary, with default settings.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.6 FakeitSettings Class Reference 52

Public instance attributes [all are string types unless noted]:

response -- Name of detector response file to use for creating the
fake spectrum.

When a fake spectrum is based on a pre-existing spectrum
which already has a response, this should be left empty.
If a name is given it will be IGNORED. However if the
pre-existing spectrum has no response, then this MUST be
filled.

If the fake spectrum is not based on an existing spectrum,
this may be filled or left empty. If it is empty,
XSPEC will just use its built-in dummy response.

arf -- Name of optional arf to use with the response. This is
ignored if no response is given.

background -- Name of optional background file to use when creating the
fake spectrum.

If based on an original spectrum, leave this empty to use
the original spectrum’s background settings.

exposure -- The fake spectrum exposure time.

correction -- Optional correction norm factor.

backExposure -- Optional background exposure time modifier.

For exposure and correction, if left empty fakeit will use
the values from the original spectrum, or 1.0 if not
based on an original spectrum. Each of these may be
entered as a string or float.

fileName -- Optional fake spectrum output file name.

If left empty, fakeit will create a default file name
based on the original spectrum, or the response name
if no original spectrum. In the latter case, the
default names will also have an incremented suffix to
prevent file overwriting.

When writing to a multiple-spectrum output file (OGIP type-2), exposure,
correction, backExposure, and fileName are applied to the entire file
rather than a single spectrum. Therefore entries for these attributes
will be IGNORED for all but the first fake spectrum in a type-2 output
file.

8.6.2 Constructor & Destructor Documentation

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.6 FakeitSettings Class Reference 53

8.6.2.1 def init (self, response = "", arf = "", background = "", exposure = "",
correction = "", backExposure = "", fileName = "")

Create a FakeitSettings object.

All arguments are optional, and all may be entered as strings.
The exposure and correction arguments may also be entered as floats.

This can also create a new copy of a pre-existing FakeitSettings
object, in which case the pre-existing object should be the only
argument entered.

Examples:

fs1 = FakeitSettings("resp1.pha", exposure=1500.0)
Reuse fs1’s settings, but with a new fileName attribute:
fs2 = FakeitSettings(fs1)
fs2.fileName = "fakeit2.pha"
Now generate 2 fake spectra
AllData.fakeit(2, [fs1, fs2])

8.6.3 Member Data Documentation

8.6.3.1 arf

Name of optional arf to use with the response.

This is

ignored if no response is given.

8.6.3.2 backExposure

Optional background exposure time modifier.

For exposure and correction, if left empty fakeit will use
the values from the original spectrum, or 1.0 if not
based on an original spectrum. Each of these may be
entered as a string or float.

8.6.3.3 background

Name of optional background file to use when creating the fake spectrum.

If based on an original spectrum, leave this empty to use
the original spectrum’s background settings.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 54

8.6.3.4 correction

Optional correction norm factor.

8.6.3.5 exposure

The fake spectrum exposure time.

8.6.3.6 fileName

Optional fake spectrum output file name.

If left empty, fakeit will create a default file name
based on the original spectrum, or the response name
if no original spectrum. In the latter case, the
default names will also have an incremented suffix to
prevent file overwriting.

8.6.3.7 response

Name of detector response file to use for creating the fake spectrum.

When a fake spectrum is based on a pre-existing spectrum
which already has a response, this should be left empty.
If a name is given it will be IGNORED. However if the
pre-existing spectrum has no response, then this MUST be
filled.

If the fake spectrum is not based on an existing spectrum,
this may be filled or left empty. If it is empty,
XSPEC will just use its built-in dummy response.

The documentation for this class was generated from the following file:

• data.py

8.7 FitManager Class Reference

Public Member Functions

• def __init__
• def error
• def ftest
• def goodness
• def improve

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 55

• def perform
• def renorm
• def show
• def steppar
• def stepparResults

Public Attributes

• bayes

Turn Bayesian inference on or off [string].

• covariance

The covariance matrix from the most recent fit [tuple of floats] (GET only).

• criticalDelta

Critical delta for fit statistic convergence [float].

• delta

Set fit delta values to be proportional to the parameter value [float].

• dof

The degrees of freedom for the fit [int] (GET only).

• method

The fitting algorithm to use [string].

• nIterations

The maximum number of fit iterations prior to query [int].

• query

The fit query setting [string].

• statistic

Fit statistic value from the most recent fit [float] (GET only).

• statMethod

The type of fit statistic in use [string].

• statTest

The type of test statistic in use [string].

• testStatistic

Test statistic value from the most recent fit [float] (GET only).

• weight

Change the weighting function used in the calculation of chi-sq [string].

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 56

8.7.1 Detailed Description

Xspec fitting class.

This is a singleton - only 1 instance allowed

Public instance attributes (implemented as properties):

bayes -- Turn Bayesian inference on or off [string].

Valid settings are "on", "off" (default), or "cons".
"cons" turns Bayesian inference on AND gives ALL
parameters a constant prior. Priors can be set for
parameters individually through the Parameter object’s
’prior’ attribute.

covariance -- The covariance matrix from the most recent fit [tuple
of floats] (GET only).

As with standard XSPEC’s "tclout covar", this only
returns the diagonal and below-diagonal matrix
elements.

criticalDelta -- Critical delta for fit statistic convergence [float].
The absolute change in the fit statistic between
iterations, less than which the fit is deemed to
have converged.

delta -- Set fit delta values to be proportional to the
parameter value [float].

Get: Returns the current proportional setting, or 0.0 if
currently using the fixed fit delta values.

Set: Enter the constant factor which will multiply the
parameter value to produce a fit delta. A constant
factor of 0.0 or negative will turn off the use of
proportional fit deltas.

dof -- The degrees of freedom for the fit [int] (GET only).

method -- The fitting algorithm to use [string].

Choices are: "leven", "migrad", "minimize", "monte",
"simplex". The default is "leven".

When setting the method, additional arguments for
<nFitIterations> and <fit critical delta> may also be
entered. Valid formats for entering multiple
arguments are:

Single string
Fit.method = "migrad 100 .05"
List of strings
Fit.method = ["migrad","100",".05"]
List of strings and numbers
Fit.method = ["migrad", 100, .05]

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 57

nIterations -- The maximum number of fit iterations prior to query [int].

query -- The fit query setting [string].
"yes": Fit will continue through query.
"no" : Fit will end at query.
"on" : User will be prompted for "y/n" response.

statistic -- Fit statistic value from the most recent fit [float]
(GET only).

statMethod -- The type of fit statistic in use [string].
Valid names: "chi" | "cstat" | "lstat" | "pgstat" |

"pstat" | "whittle"
To set for individual spectra, add a spectrum number

(or range) to the string: ie. Fit.statMethod = "cstat 2"

statTest -- The type of test statistic in use [string].
Valid names: "ad" | "chi" | "cvm" | "ks" | "pchi" |

"runs"
To set for individual spectra, add a spectrum number

(or range) to the string: ie. Fit.statTest = "ad 2"

testStatistic -- Test statistic value from the most recent fit [float]
(GET only).

weight -- Change the weighting function used in the calculation of
chi-sq [string].

Available functions: "standard", "gehrels",
"churazov", "model"

8.7.2 Constructor & Destructor Documentation

8.7.2.1 def init (self)

8.7.3 Member Function Documentation

8.7.3.1 def error (self, argString)

Determine confidence intervals of a fit.

Input: argString is a string with identical syntax to the standard
interactive XSPEC error command.
"[[stopat <ntrial> <toler>] [maximum <redchi>]

[<delta fit statistic>] [<model param range>...]]"

where:
<model param range> =::[<modelName>:]<first param> -

<last param>

See the XSPEC manual for a more detailed description.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 58

The results of the error command are stored in the "error" attributes
of the individual Parameter objects.

Examples:

Estimate the 90% confidence ranges for parameters 1-3
Fit.error("1-3")

Repeat but with delta fit statistic = 9.0, equivalent to the
3 sigma range.

Fit.error("9.0")
Estimate for parameter 3 after setting the number of trials to 20.
Note that the tolerance field has to be included (or skipped over).

Fit.error("stop 20,,3")

8.7.3.2 def ftest (self, chisq2, dof2, chisq1, dof1)

Calculate the F-statistic and its probability given new and old
values of chisq and number of degrees of freedom (DOF).

Input: chisq2 - float
dof2 - int
chisq1 - float
dof1 - int

Chisq2 and dof2 should come from a new fit, in which an extra model
component was added to (or a frozen parameter thawed from) the
model which gave chisq1 and dof1. If the F-test probability is
low then it is reasonable to add the extra model component.
WARNING: it is not correct to use the F-test statistic to test
for the presence of a line (see Protassov et al 2002, ApJ 571,
545).

Returns: The F-test probability [float].

8.7.3.3 def goodness (self, nRealizations = 100, sim = False)

Perform a Monte Carlo calculation of the goodness-of-fit.

nRealizations -- Number of spectra to simulate [int].
sim -- If False (default), all simulations are drawn from

the best fit model parameter values. If True,
parameters will be drawn from a Gaussian centered
on the best fit.

8.7.3.4 def improve (self)

Try to find a new minimum.

When Fit.method is set to one of the MINUIT algorithms, this
will run the MINUIT ’improve’ command. This does nothing when

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 59

Fit.method is set to Levenberg-Marquardt.

8.7.3.5 def perform (self)

Perform fit.

8.7.3.6 def renorm (self, setting = None)

Renormalize the model to minimize statistic with current parameters

setting -- If None, this will perform an explicit immediate
renormalization. Other options determine when
renormalization will be performed automatically. They
are the following strings:

"auto" - Renormalize after a model command or parameter
change, and at the beginning of a fit.

"prefit" - Renormalize only at the beginning of a fit.

"none" - Perform no automatic renormalizations.

8.7.3.7 def show (self)

Show fit information.

8.7.3.8 def steppar (self, argString)

Perform a steppar run.

Generate the statistic "surface" for 1 or more parameters.

Input: argString is a string with identical syntax to the standard
interactive XSPEC steppar command.
"<step spec> [<step spec> ...]" where:

<step spec> ::= [<log|nolog>] [<current|best>]
[<modName>:]<param index> <low value> <high value> <# steps>

See the XSPEC manual for a more detailed description of specs.

Examples:

Step parameter 3 from 1.5 to 2.5 in 10 linear steps
Fit.steppar("3 1.5 2.5 10")

Repeat the above but with logarithmic steps
Fit.steppar("log")

Step parameter 2 linearly from -.2 to .2 in steps of .02
Fit.steppar("nolog 2 -.2 .2 20")

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 60

8.7.3.9 def stepparResults (self, arg)

Retrieve values from the most recent steppar run.

Input: arg -- argument should either be ’statistic’, ’delstat’,
or a parameter specifier. A parameter specifier
should be a string of the form:
’[<modName>:]<parNum>’ or simply an integer <parNum>.

Returns the requested values as a list of floats.

8.7.4 Member Data Documentation

8.7.4.1 bayes

Turn Bayesian inference on or off [string].

Valid settings are "on", "off" (default), or "cons".
"cons" turns Bayesian inference on AND gives ALL
parameters a constant prior. Priors can be set for
parameters individually through the Parameter object’s
’prior’ attribute.

8.7.4.2 covariance

The covariance matrix from the most recent fit [tuple of floats] (GET only).

As with standard XSPEC’s "tclout covar", this only
returns the diagonal and below-diagonal matrix
elements.

8.7.4.3 criticalDelta

Critical delta for fit statistic convergence [float].

The absolute change in the fit statistic between
iterations, less than which the fit is deemed to
have converged.

8.7.4.4 delta

Set fit delta values to be proportional to the parameter value [float].

Get: Returns the current proportional setting, or 0.0 if
currently using the fixed fit delta values.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.7 FitManager Class Reference 61

Set: Enter the constant factor which will multiply the
parameter value to produce a fit delta. A constant
factor of 0.0 or negative will turn off the use of
proportional fit deltas.

8.7.4.5 dof

The degrees of freedom for the fit [int] (GET only).

8.7.4.6 method

The fitting algorithm to use [string].

Choices are: "leven", "migrad", "minimize", "monte",
"simplex". The default is "leven".

When setting the method, additional arguments for
<nFitIterations> and <fit critical delta> may also be
entered. Valid formats for entering multiple
arguments are:

Single string
Fit.method = "migrad 100 .05"
List of strings
Fit.method = ["migrad","100",".05"]
List of strings and numbers
Fit.method = ["migrad", 100, .05]

8.7.4.7 nIterations

The maximum number of fit iterations prior to query [int].

8.7.4.8 query

The fit query setting [string].

"yes": Fit will continue through query.
"no" : Fit will end at query.
"on" : User will be prompted for "y/n" response.

8.7.4.9 statistic

Fit statistic value from the most recent fit [float] (GET only).

8.7.4.10 statMethod

The type of fit statistic in use [string].

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.8 Model Class Reference 62

Valid names: "chi" | "cstat" | "lstat" | "pgstat" |
"pstat" | "whittle"

To set for individual spectra, add a spectrum number
(or range) to the string: ie. Fit.statMethod = "cstat 2"

8.7.4.11 statTest

The type of test statistic in use [string].

Valid names: "ad" | "chi" | "cvm" | "ks" | "pchi" |
"runs"

To set for individual spectra, add a spectrum number
(or range) to the string: ie. Fit.statTest = "ad 2"

8.7.4.12 testStatistic

Test statistic value from the most recent fit [float] (GET only).

8.7.4.13 weight

Change the weighting function used in the calculation of chi-sq [string].

Available functions: "standard", "gehrels",
"churazov", "model"

The documentation for this class was generated from the following file:

• fit.py

8.8 Model Class Reference

Public Member Functions

• def __init__
• def __setattr__
• def __call__
• def energies
• def folded
• def setPars
• def show
• def showList
• def untie
• def values

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.8 Model Class Reference 63

Public Attributes

• name

The model name, optional in Xspec.

• nParameters

Number of parameters in Model object [int].

• expression

The model expression string, using full component names.

• componentNames

List of component name strings.

• flux

A tuple containing the results of the most recent flux calculation for this model.

• lumin

Same as flux but for luminosity calculations.

• startParIndex

Global index of the first parameter in this Model object [int].

8.8.1 Detailed Description

Xspec model class.

Public instance attributes. Unless stated otherwise, each is get only.
flux and lumin are implemented as properties.

expression -- The model expression string, using full component
names.

name -- The model name, optional in Xspec.
This is an empty string for un-named models.

<components> -- Model includes an attribute of type Component for every
Xspec component in the model. The attribute name is
the same as the full name of the Xspec component
(ie. m=Model("po") produces an m.powerlaw
attribute).

componentNames -- List of component name strings.

flux -- A tuple containing the results of the most recent flux
calculation for this model.

The tuple values are: (value, errLow, errHigh (in
ergs/cm^2), value, errLow, errHigh (in photons)).
This will be filled in after an AllModels.calcFlux()
call ONLY when no spectra are loaded. Otherwise
results are stored in the Spectrum objects.

lumin -- Same as flux but for luminosity calculations.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.8 Model Class Reference 64

nParameters -- Number of parameters in Model object [int].

startParIndex -- Global index of the first parameter in this Model
object [int].

8.8.2 Constructor & Destructor Documentation

8.8.2.1 def init (self, exprString, modName = "", sourceNum = 1, setPars = None)

Model constructor.

New model is automatically added to the AllModels container, with
one Model object constructed (internally) for each data group to
which the model applies. This function returns the Model object
corresponding to the lowest numbered data group.

exprString -- The model expression string, components may be
abbreviated.

modName -- Optional name assigned to model. Any whitespace in
string will be removed. This is required if
souce number is > 1.

sourceNum -- Optional integer for model’s source number.

setPars -- Optional initial values for the model’s parameters.
These may be sent in a tuple, list, or dictionary
(or as a single float or string if only setting the
first parameter). Examples:

Create a model with all default parameter settings:
m1 = Model("gauss")

Create wabs*powerlaw and initialize pars 1 and 3 to
something other than their default values.
m2 = Model("wa*po", setPars={1:5.5, 3:".18,,.01,.02"})

Create another model named ’b’, and reset par 2 to 5.0:
m3 = Model("wa*bbody", "b", setPars={2:5.0})

If any mistakes are made with the optional setPars
parameter arguments, the model will be created using
all default values.

You can always reset the parameters later with the
Model.setPars() method, or directly through the Parameter
object’s ’values’ attribute.

8.8.3 Member Function Documentation

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.8 Model Class Reference 65

8.8.3.1 def call (self, parIdx)

Get a Parameter object from the Model.

parIdx -- The parameter index number. Regardless of the data group
to which the Model object belongs, its parameters are
numbered from 1 to nParameters.

Returns the specified Parameter object.

8.8.3.2 def setattr (self, attrName, value)

8.8.3.3 def energies (self, spectrumIndex)

Get the Model object’s energies array for a given spectrum.

spectrumIndex - The spectrum index number. If this is 0, it will
return the energies array used by the default dummy
response.

Returns a list of energy array elements, the size will be 1 larger than
the corresponding flux array.

This will return the energies array as specified by the
AllModels.setEnergies function if that has been used to override
the response energies array.

8.8.3.4 def folded (self, spectrumIndex)

Get the Model object’s folded flux array for a given spectrum.

spectrumIndex -- The spectrum index number. This number should
be 0 if model is not presently applied to any
spectra (ie. in the "off" state).

Returns a list of folded flux array elements.

8.8.3.5 def setPars (self, parVals)

Change the value of multiple parameters in a single function call.

This is a quick way to change multiple parameter values at a time
since only a SINGLE model recalculation will be performed at the end.
In contrast, when parameter values are changed through the individual
parameter objects, the model is recalculated after EACH parameter
change. (See also AllModels.setPars(), for changing multiple parameters
belonging to multiple model objects.)

parVals -- An arbitrary number of parameter values. These may
be listed singly (as floats or strings), or collected

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.8 Model Class Reference 66

into tuple, list or dictionary containers.
Dictionaries must be used if parameters are not in
consecutive order, in which case the parameter index
number is the dictionary key.

Examples: Assume we have a model object m1 with 5 parameters.

Simplest case: change only the parameter values (and not the
auxiliary values, ’sigma’, ’min’, ’bot’, etc.), and change
them in consecutive order.

Pass in 1 or more floats
m1.setPars(5.5, 7.83, 4.1e2) # changes pars 1-3
m1.setPars(2.0, 1.3e-5, -.05, 6.34, 9.2) # changes all 5 pars

Still changing only the parameter values, but skipping over some.

m1.setPars(.02, 4.4, {5:3.2e5}) # changes pars 1-2, 5
m1.setPars({2:3.0, 4:-1.2}) # changes pars 2, 4
m1.setPars({2:1.8}, 9.3, 5.32) # changes pars 2, 3, 4

Now also change the auxiliary values for some of the parameters.
Pass in a STRING containing "<val>,<sigma>,<min>,<bottom>,<top>,
<max>" This uses the same syntax as Standard XSPEC’s "newpar"
command. Aux values can be skipped by using multiple commas.

This sets a new <val>, <sigma>, and <max> for parameter 1, and
a new <val> of 5.3 for parameter 2.
m1.setPars(".3,.01,,,,100", 5.3)

This sets all new auxiliary values for parameter 3.
m1.setPars({3:".8 -.01 1e-4 1e-3 1e5 1e6"})

8.8.3.6 def show (self)

Display information for a single Model object.

8.8.3.7 def showList ()

Show the list of all available XSPEC model components.

8.8.3.8 def untie (self)

Remove links for all parameters in Model object

8.8.3.9 def values (self, spectrumIndex)

Get the Model object’s values array for a given spectrum.

spectrumIndex -- The spectrum index number. This number should
be 0 if model is not presently applied to any

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.8 Model Class Reference 67

spectra (ie. in the "off" state).

Returns the values array as a list.

8.8.4 Member Data Documentation

8.8.4.1 componentNames

List of component name strings.

8.8.4.2 expression

The model expression string, using full component names.

8.8.4.3 flux

A tuple containing the results of the most recent flux calculation for this model.

The tuple values are: (value, errLow, errHigh (in
ergs/cm^2), value, errLow, errHigh (in photons)).
This will be filled in after an AllModels.calcFlux()
call ONLY when no spectra are loaded. Otherwise
results are stored in the Spectrum objects.

8.8.4.4 lumin

Same as flux but for luminosity calculations.

8.8.4.5 name

The model name, optional in Xspec.

This is an empty string for un-named models.

8.8.4.6 nParameters

Number of parameters in Model object [int].

8.8.4.7 startParIndex

Global index of the first parameter in this Model object [int].

The documentation for this class was generated from the following file:

• model.py

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 68

8.9 ModelManager Class Reference

Public Member Functions

• def __init__
• def __call__
• def __iadd__
• def __isub__
• def addPyMod
• def calcFlux
• def calcLumin
• def clear
• def eqwidth
• def setEnergies
• def initpackage
• def lmod
• def setPars
• def show
• def simpars

Public Attributes

• sources

A dictionary containing the currently active <source number>="">:<model
name>=""> assignments.

• systematic

The fractional model systematic error.

8.9.1 Detailed Description

Models container.

This is a singleton - only 1 instance allowed

Public attributes:

sources -- A dictionary containing the currently active
<source number>:<model name> assignments.
If the model has no name, <model name> will
be an empty string. (GET only)

systematic -- The fractional model systematic error.
This will be added in quadrature to the error
on the data when evaluating chi-squared. The
default value is zero.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 69

8.9.2 Constructor & Destructor Documentation

8.9.2.1 def init (self)

8.9.3 Member Function Documentation

8.9.3.1 def call (self, groupNum, modName = "")

Get Model objects from the AllModels container.

groupNum -- The data group number to which the Model object corresponds.

modName -- Optional string containing the Model’s name (if any).

Returns the Model object.

8.9.3.2 def iadd (self, modelInfo)

Define a new model and add it to the AllModels container.

This operation is equivalent to the Model class constructor,
except that it does not return a Model object.

modelInfo -- A string containing the model expression (component
names may be abbreviated). The model will be
unnamed and assigned to source number = 1.

OR

If supplying a model name and a source number, this
should be a tuple with:

modelInfo[0] = model expression string
modelInfo[1] = model name string
modelInfo[2] = source number

8.9.3.3 def isub (self, modName)

Remove all copies of the given model from the AllModels container.

modName -- The name of the model to be removed, or an empty string if
the model has no name. If set to "*", this will behave
like the clear() function and remove all models.

8.9.3.4 def addPyMod (self, func, parInfo, compType, calcsErrors = False,
spectrumDependent = False)

Add a user-defined Python model function to XSPEC’s models library.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 70

This provides a way to add local models written in Python to XSPEC. It
performs the same role as the combination of ’initpackage’/’lmod’ commands
do for C/C++/Fortran local models. The first 3 arguments (func, parInfo,
and compType) are mandatory.

func -- The user-defined model function (Python type = ’function’).
Function must define at least 3 arguments for energies,
parameters, and flux.

A optional fourth argument may be added if your model
calculates flux errors, and a fifth if your model
requires that XSPEC pass it the spectrum number.

parInfo -- A tuple of strings. One string for each parameter your
model requires. The format of these strings is identical
to what is placed in a ’model.dat’ file (see Appendix C of
the XSPEC manual).

compType -- A string telling XSPEC the type of your model.
Currently allowed types: ’add’, ’mul’, ’con’

calcsErrors -- OPTIONAL. If your model function also calculates model errors,
set this to True.

spectrumDependent -- OPTIONAL. Set this to TRUE only if your model function
has an explicit dependence on the spectrum.

Example usage: A local additive model written in Python, named ’myModel’,
which takes parameters ’par1’ and ’par2’:

def myModel(engs, pars, flux):
[... model code, fill in
flux array based on input
engs and pars arrays ...]

myModelParInfo=("par1 \"\" 2.0 -10.0 -9.0 9.0 10.0 0.01",
"par2 keV 1e-3 1e-5 1e-5 100. 200. .01")

AllModels.addPyMod(myModel, myModelParInfo, ’add’)

8.9.3.5 def calcFlux (self, cmdStr)

Calculate the model flux for a given energy range.

cmdStr -- A string containing the energy limit values and
optional error specifiers. This follows the same
syntax rules as the standard XSPEC flux command.

The flux will be calculated for all loaded spectra, and the results
will be stored in the Spectrum objects’ flux attribute. If no
spectra are loaded, the flux will be stored in the Model objects’
flux attribute.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 71

8.9.3.6 def calcLumin (self, cmdStr)

Calculate the model luminosity for a given energy range and redshift.

cmdStr -- A string containing the energy limit values and
optional error specifiers. This follows the same
syntax rules as the standard XSPEC lumin command.

The lumin will be calculated for all loaded spectra, and the results
will be stored in the Spectrum objects’ lumin attribute. If no
spectra are loaded, the flux will be stored in the Model objects’
lumin attribute.

8.9.3.7 def clear (self)

Remove all models.

8.9.3.8 def eqwidth (self, component, rangeFrac = None, err = False, number = None,
level = None)

Calculate the equivalent width of a model component.

Please see the Standard XSPEC Manual for a discussion on how the eqwidth
of a component is calculated.

component -- An integer specifying the model component number for which
to calculate the eqwidth (left-most component is 1). If
the component belongs to a NAMED model, then this must be
a STRING of the form "<modelName>:<compNumber>".

rangeFrac -- Determines the energy range for the continuum calculation:
from E(1-<rangeFrac>) to E(1+<rangeFrac>) where E is
the location of the peak of the photon spectrum. The
initial default rangeFrac is 0.05. Setting this will
change the future default value.

err -- If set to True, errors will be estimated on the equivalent
width calculation. This will also require the setting of
the "number" and "level" arguments.

number -- Only set this if "err" = True. This determines the number
of sets of randomized parameter values to draw to make
the error estimation. [int]

level -- Only set this if "err" = True. The error algorithm will
order the equivalent widths of the <number> sets of
parameter values, and the central <level> percent will
determine the error range. [float]

The results of the most recent eqwidth calculation are stored as
attributes of the currently loaded Spectrum objects.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 72

8.9.3.9 def initpackage (self, packageName, modDescrFile, dirPath = None, udmget =
False)

Initialize a package of local models.

Use this method to compile your local model source code and build
a library, which can then be loaded into XSPEC with the ’lmod’ method.

packageName -- The name of the model package [string].
The name should be all lower-case and contain NO
numerals or spaces. The local models library file
will be based upon this name, and this is also the
name you will use when loading the library with the
’lmod’ method.

modDescrFile -- Name of your local model description file [string].
This file is typically named ’lmodel.dat’, but you’re
free to name it something else.

dirPath -- Optional directory path to your local models [string].
This may be an absolute or relative path. If you
don’t enter this argument, XSPEC will look in the
directory given by the LOCAL_MODEL_DIRECTORY in your
Xspec.init start-up file.

udmget -- Optional flag for when your models need to call XSPEC’s
udmget function [bool]. Udmget is a function for
allocating dynamic memory in Fortran routines, and
is no longer used within XSPEC itself. If this
flag is set to ’True’, initpackage will copy the
necessary files and build the udmget function within
your local models directory.

8.9.3.10 def lmod (self, packageName, dirPath = None)

Load a local models library.

packageName -- The name of the model package to be loaded. This
is the same name that is the first argument in
the initpackage command.

dirPath -- An optional string argument specifying the (absolute or
relative) path to the local model directory. If this
argument is not entered, Xspec will look in the
directory given by the LOCAL_MODEL_DIRECTORY in the
Xspec.init start-up file.

8.9.3.11 def setEnergies (self, arg1, arg2 = None)

Specify new energy binning for model fluxes.

Supply an energy binning array to be used in model evalutations in place
of the associated response energies, or add an extension to the response

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 73

energies.

arg1 -- A string containing either:
"<range specifier> [<additional range specifiers>...]"
"<name of input ascii file>"
"extend" [This option also uses arg2]
"reset"

where the first <range specifier> ::=
<lowE> <highE> <nBins> log|lin

<additional range specifier> ::= <highE> <nBins> log|lin
This uses the same syntax as standard XSPEC’s "energies"
command. Values can be delimited by spaces or commas.

arg2 -- Only needed when arg1 is "extend", this requires an extension
specifier string of the form:
"low|high <energy> <nBins> log|lin"

All energies are in keV. Multiple ranges may be specified to allow for
varied binning in different segments of the array, but note that no gaps
are allowed in the overall array. Therefore only the first range
specifier accepts a <lowE> parameter. Additional ranges will
automatically begin at the <highE> value of the previous range.

With the "extend" option, the specifier string supplied to arg2 will
extend the existing response energy array by an additional <nBins> to
the new <energy>, in either the high or low direction.

Once an energy array is specified, it will apply to all models and will
be used in place of any response energy array (from actual or dummy
responses) for calculating and binning the model flux. It will also
apply to any models that are created after it is specified. To turn off
this behavior and return all models back to using their response
energies, set arg1 to "reset".

Arg1 can also be the name of an ascii text file containing a custom
energy array. To see the proper file format, and for more details in
general about the energies command, please see the standard XSPEC
manual.

Examples:

Create an array of 1000 logarithmic-spaced bins, from .1 to 50. keV
AllModels.setEnergies(".1 50. 1000 log")
Change it to 500 bins
AllModels.setEnergies(",,500")
Now restore original response energies, but with an extension of the
high end to 75.0 keV with 100 additional linear bins.
AllModels.setEnergies("extend","high,75.,100 lin")
Return to using original response energies with no extensions.
AllModels.setEnergies("reset")

8.9.3.12 def setPars (self, args)

Change the value of multiple parameters from multiple model objects

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.9 ModelManager Class Reference 74

with a single function call.

This is a quick way to change multiple parameter values at a time
since only a SINGLE recalculation will be performed at the end.
In contrast, when parameter values are changed through the individual
parameter objects, the model is recalculated after EACH parameter
change. (If all the parameters belong to a single model object,
you can also use the Model.setPars() function.)

args -- An arbitrary number model objects and parameter values.
The first argument must be model object, followed by
one or more of its new parameter values. Additional
groups of model objects and parameter values may follow.

The parameter values follow the same syntax rules as with
the single Model.setPars() function. They can be listed
singly (as floats or strings), or collected into tuple,
list, or dictionary containers. Dictionaries must be used
when parameters are not in consecutive order, in which case
the parameter index number is the dictionary key.

Parameter indices are local to each model object. That is,
they are always numbered from 1 to N where N is the number
of parameters in the model object.

Examples:

Assume we’ve already assigned a 3 parameter model to 2 data groups:
m1 = AllModels(1)
m2 = AllModels(2)

Various ways of changing parameters in consecutive order.

This changes pars 1-2 in m1 and 1-3 in m2:
AllModels.setPars(m1, .4, "1.3 -.01", m2, "5.3 ,,3.0e-4", 2.2, 1.9)
...and these 2 examples do the exact same thing as above:
valList = [.4, "1.3 -.01"]
valTuple = ("5.3 ,,3.0e-4", 2.2, 1.9)
AllModels.setPars(m1, valList, m2, valTuple)
AllModels.setPars(m1, valList, m2,"5.3 ,,3.0e-4", [2.2, 1.9])

Parameters in non-consecutive order, must use Python
dictionaries:

Change parameter 2 in m1, parameter 1 and 3 in m2:
AllModels.setPars(m1, {2:8.3}, m2, {1:0.99, 3:"7.15 -.01"})
...same thing as above:
AllModels.setPars(m1, {2:8.3}, m2, 0.99, {3:"7.15 -.01"})

Note that identical syntax is used for model objects belonging
to different sources. All of the above examples are still valid
had we obtained m1 and m2 like this:

m1 = Model("wabs*pow", "firstMod", 1)
m2 = Model("gauss", "secondMod", 2)

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.10 Parameter Class Reference 75

8.9.3.13 def show (self, parIDs = None)

Show all or a subset of Xspec model parameters.

parIDs -- An optional string specifying a range of parameters as
with Xspec’s "show parameter" function. If no string is
supplied, this will show all parameters in all models.

8.9.3.14 def simpars (self)

Create a list of simulated parameter values.

Values are drawn from a multivariate normal distribution based on the
covariance matrix from the last fit, or from Monte Carlo Markov chains
if they are loaded. This method is identical to doing ’tclout simpars’
in standard XSPEC.

Returns a tuple of the simulated parameter values.

8.9.4 Member Data Documentation

8.9.4.1 sources

A dictionary containing the currently active <source number>="">:<model
name>=""> assignments.

If the model has no name, <model name> will
be an empty string. (GET only)

8.9.4.2 systematic

The fractional model systematic error.

This will be added in quadrature to the error
on the data when evaluating chi-squared. The
default value is zero.

The documentation for this class was generated from the following file:

• model.py

8.10 Parameter Class Reference

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.10 Parameter Class Reference 76

Public Member Functions

• def __init__
• def untie
• def __float__
• def __add__
• def __radd__
• def __iadd__
• def __mul__
• def __rmul__
• def __imul__

Public Attributes

• name

Name of Parameter (GET only).

• values

List of value floats [val,delta,min,bot,top,max].

• sigma

The Parameter fit sigma (-1.0 when not applicable) (GET only).

• frozen

Boolean, if True then parameter is frozen.

• link

Link expression string (empty if not linked).

• index

Position of the parameter within the Model object.

• unit

An optional string for the parameter’s units (GET only).

• error

A tuple containing the results of the most recent fit error command performed on the
parameter (GET only).

• prior

A tuple containing the settings for the prior used when Bayesian inference is turned
on.

8.10.1 Detailed Description

Model or response parameter class.

Public instance attributes, implemented as properties.

name -- Name of Parameter (GET only).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.10 Parameter Class Reference 77

values -- List of value floats [val,delta,min,bot,top,max].
This may be set with:

string: x.values = "3.2,,,,1e2, 1e3"
single float: x.values = 4.1 (sets ’val’ only)
tuple: x.values = 8.2,.02, -10.
list: x.values = [8.2,.02, -10.]

Note that Tuple and List input do not allow the use
of consecutive commas for argument spacing.

sigma -- The Parameter fit sigma (-1.0 when not applicable) (GET only).

frozen -- Boolean, if True then parameter is frozen.

link -- Link expression string (empty if not linked).

index -- Position of the parameter within the Model object.
(The first parameter has index = 1) Note that this is the
same value that would be used to obtain a Parameter object
from its Model, ie: par = mod(<index>)
(GET only).

unit -- An optional string for the parameter’s units (GET only).

error -- A tuple containing the results of the most recent fit error
command performed on the parameter (GET only).
The tuple values are: (error low bound, error high bound,

error status code string)

prior -- A tuple containing the settings for the prior used when
Bayesian inference is turned on.

Get: Returns a tuple containing:
(<priorType>, <optional hyperparameters>)

Set with:
string: <priorType>
or tuple: (<priorType>, <optional hyperparameters>)
Valid priorTypes are "cons", "exp", "jeffreys", "gauss".
Hyperparameters should be entered as floats.

8.10.2 Constructor & Destructor Documentation

8.10.2.1 def init (self, parName, parStrategy)

Parameter constructor.

Not intended for stand-alone creation. This should only be called
from within Model, Component, or Response classes.

parName -- Parameter name

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.10 Parameter Class Reference 78

8.10.3 Member Function Documentation

8.10.3.1 def add (self, other)

8.10.3.2 def float (self)

8.10.3.3 def iadd (self, other)

8.10.3.4 def imul (self, other)

8.10.3.5 def mul (self, other)

8.10.3.6 def radd (self, other)

8.10.3.7 def rmul (self, other)

8.10.3.8 def untie (self)

Remove parameter link (if any)

8.10.4 Member Data Documentation

8.10.4.1 error

A tuple containing the results of the most recent fit error command performed on the
parameter (GET only).

The tuple values are: (error low bound, error high bound,
error status code string)

8.10.4.2 frozen

Boolean, if True then parameter is frozen.

8.10.4.3 index

Position of the parameter within the Model object.

(The first parameter has index = 1) Note that this is the
same value that would be used to obtain a Parameter object
from its Model, ie: par = mod(<index>)
(GET only).

8.10.4.4 link

Link expression string (empty if not linked).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 79

8.10.4.5 name

Name of Parameter (GET only).

8.10.4.6 prior

A tuple containing the settings for the prior used when Bayesian inference is turned on.

Get: Returns a tuple containing:
(<priorType>, <optional hyperparameters>)

Set with:
string: <priorType>
or tuple: (<priorType>, <optional hyperparameters>)
Valid priorTypes are "cons", "exp", "jeffreys", "gauss".
Hyperparameters should be entered as floats.

8.10.4.7 sigma

The Parameter fit sigma (-1.0 when not applicable) (GET only).

8.10.4.8 unit

An optional string for the parameter’s units (GET only).

8.10.4.9 values

List of value floats [val,delta,min,bot,top,max].

This may be set with:
string: x.values = "3.2,,,,1e2, 1e3"
single float: x.values = 4.1 (sets ’val’ only)
tuple: x.values = 8.2,.02, -10.
list: x.values = [8.2,.02, -10.]

Note that Tuple and List input do not allow the use
of consecutive commas for argument spacing.

The documentation for this class was generated from the following file:

• parameter.py

8.11 PlotManager Class Reference

Public Member Functions

• def __init__

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 80

• def __call__
• def addCommand
• def delCommand
• def iplot
• def noID
• def setGroup
• def setID
• def setRebin
• def show
• def x
• def xErr
• def y
• def yErr
• def model
• def backgroundVals

Public Attributes

• add

Turn on/off the display of individual additive components [bool].

• area

Toggle displaying the data divided by the response effective area for each channel
[bool].

• background

Toggle displaying the background spectrum (if any) when plotting data [bool].

• commands

Custom plot commands to be appended to Xspec-generated commands.

• device

The plotting device name [string].

• perHz

Toggle displaying Y-axis units per Hz when using wavelength units for X-axis [bool].

• redshift

Apply a redshift to the X-axis energy or wavelength values [float].

• splashPage

When set to False, the usual XSPEC version and build data information will not be
printed to the screen when the first plot window is initially opened [bool].

• xAxis

X-Axis Units [string].

• xLog

Set the x-axis to logarithmic or linear for energy or wavelength plots [bool].

• yLog

See xLog.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 81

8.11.1 Detailed Description

Xspec plotting class.

This is a singleton - only 1 instance allowed

Public instance attributes:

add -- Turn on/off the display of individual additive
components [bool].

area -- Toggle displaying the data divided by the response
effective area for each channel [bool].

background -- Toggle displaying the background spectrum (if any)
when plotting data [bool].

commands -- Custom plot commands to be appended to Xspec-generated
commands.

Get: Returns a tuple of the currently entered command
strings.

Set: Replaces all commands with the new tuple of
strings.

To remove ALL plot commands, set to an empty tuple, ie:
Plot.commands = ()

For inserting and deleting individual commands, use
addCommand and delCommand functions.

device -- The plotting device name [string].

perHz -- Toggle displaying Y-axis units per Hz when using
wavelength units for X-axis [bool].

redshift -- Apply a redshift to the X-axis energy or wavelength
values [float].

This will multiply X-axis energies by a factor of (1+z)
to allow for viewing in the source frame. Y-axis values
will be equally affected in plots which are normalized
by energy or wavelength. Note that this is not
connected in any way to redshift parameters in the model
(or the setplot id redshift parameter) and should only
be used for illustrative purposes.

splashPage -- When set to False, the usual XSPEC version and build data
information will not be printed to the screen when the
first plot window is initially opened [bool].

xAxis -- X-Axis Units [string].
Valid options are: "channel"
(energies) "keV", "MeV", "GeV", "Hz"
(wavelengths) "angstrom", "cm", "micron", nm"

These are case-insensitive and may be abbreviated.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 82

This setting also affects the ignore/notice range
interpretation.

xLog -- Set the x-axis to logarithmic or linear for energy or
wavelength plots [bool].

xLog has no effect on plots in channel space. xLog
and yLog will not work for model-related plots
(eg. model, ufspec, and their variants) as their axes
are always set to log scale.

yLog -- See xLog.

8.11.2 Constructor & Destructor Documentation

8.11.2.1 def init (self, deviceStr)

8.11.3 Member Function Documentation

8.11.3.1 def call (self, panes)

Display the plot.

Input 1 or more plot command strings.

Examples:

Single Plots:
Plot("data")
Plot("model")
Plot("ufspec")

Multiple Plots (or single plots taking additional arguments):
Plot("data","model","resid")
Plot("data model resid")
Plot("data,model,resid")
Plot("data","model m1") # Plots data and a model named "m1".

To repeat a plot using the previously entered arguments,
simply do: Plot()

8.11.3.2 def addCommand (self, cmd)

Add a plot command [string] to the end of the plot commands list.

8.11.3.3 def backgroundVals (self, plotGroup = 1, plotWindow = 1)

Return a list of background data values for a plot group and plot window

Background value arrays only exist for data plots when the

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 83

Plot.background flag is set to True.

8.11.3.4 def delCommand (self, num)

Remove a plot command by (1-based) number [int].

This is intended for removal of single commands. To remove ALL
commands, set the Plot.commands attribute to an empty tuple, ie:

Plot.commands = ()

8.11.3.5 def iplot (self, panes)

Display the plot and leave it in interactive plotting mode.

This function takes the same arguments and syntax as when
displaying plots in the regular mode (through Plot’s
__call__ method). Examples:

Plot.iplot("data") # 1-panel data plot
Plot.iplot("data model") # 2-panel data and model
Plot.iplot() # Repeats the previous plot.

8.11.3.6 def model (self, plotGroup = 1, plotWindow = 1)

Return a list of Y-coordinate model values for a plot group and plot window

8.11.3.7 def noID (self)

Turn off the plotting of line IDs.

8.11.3.8 def setGroup (self, groupStr)

Define a range of spectra to be in the same plot group.

Input argument is a string specifying one or more ranges, delimited
by commas and/or spaces.

Examples:
"1-3 4-6" : Spectra 1-3 in plot group 1, 4-6 in group 2.
"1,2 4" : Spectra 1, 2, and 4 are each now in their own group.
"1-**" : All spectra are in a single plot group.

None : If input argument is Python’s None variable, all
plot grouping will be removed.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 84

8.11.3.9 def setID (self, temperature = None, emissivity = None, redshift = None)

Switch on plotting of line IDs.

All input arguments are floats and are optional. If they are omitted
they will retain their previous values.

temperature -- Selects the temperature of the APEC line list.
emissitivity -- Only lines with emissivities above this setting will

be displayed.
redshift -- Line display will be redshifted by this amount.

To turn off plotting of line IDs, use the noID() function.

8.11.3.10 def setRebin (self, minSig = None, maxBins = None, groupNum = None,
errType = None)

Define characteristics used in rebinning the data (for plotting
purposes ONLY).

All input arguments are optional. If they are omitted they will retain
their previous values.

minSig -- Bins will be combined until this minimum significance
is reached (in units of sigma). [float]

maxBins -- The maximum number of bins to combine in attempt to
reach minSig. [int]

groupNum -- The plot group number to which this setting applies.
If number is negative, it will apply to ALL plot
groups. [int]

errType -- Specifies how to calculate the error bars on the new
bins. Valid entries are "quad", "sqrt", "poiss-1",
"poiss-2", "poiss-3". [string] See the "setplot"
description in the XSPEC manual for more information.

8.11.3.11 def show (self)

Display current plot settings

8.11.3.12 def x (self, plotGroup = 1, plotWindow = 1)

Return a list of X-coordinate data values for a plot group and plot window

8.11.3.13 def xErr (self, plotGroup = 1, plotWindow = 1)

Return a list of X-coordinate errors for a plot group and plot window

8.11.3.14 def y (self, plotGroup = 1, plotWindow = 1)

Return a list of Y-coordinate data values for a plot group and plot window

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.11 PlotManager Class Reference 85

8.11.3.15 def yErr (self, plotGroup = 1, plotWindow = 1)

Return a list of Y-coordinate errors for a plot group and plot window

8.11.4 Member Data Documentation

8.11.4.1 add

Turn on/off the display of individual additive components [bool].

8.11.4.2 area

Toggle displaying the data divided by the response effective area for each channel
[bool].

8.11.4.3 background

Toggle displaying the background spectrum (if any) when plotting data [bool].

8.11.4.4 commands

Custom plot commands to be appended to Xspec-generated commands.

Get: Returns a tuple of the currently entered command
strings.

Set: Replaces all commands with the new tuple of
strings.

To remove ALL plot commands, set to an empty tuple, ie:
Plot.commands = ()

For inserting and deleting individual commands, use
addCommand and delCommand functions.

8.11.4.5 device

The plotting device name [string].

8.11.4.6 perHz

Toggle displaying Y-axis units per Hz when using wavelength units for X-axis [bool].

8.11.4.7 redshift

Apply a redshift to the X-axis energy or wavelength values [float].

This will multiply X-axis energies by a factor of (1+z)

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.12 Response Class Reference 86

to allow for viewing in the source frame. Y-axis values
will be equally affected in plots which are normalized
by energy or wavelength. Note that this is not
connected in any way to redshift parameters in the model
(or the setplot id redshift parameter) and should only
be used for illustrative purposes.

8.11.4.8 splashPage

When set to False, the usual XSPEC version and build data information will not be
printed to the screen when the first plot window is initially opened [bool].

8.11.4.9 xAxis

X-Axis Units [string].

Valid options are: "channel"
(energies) "keV", "MeV", "GeV", "Hz"
(wavelengths) "angstrom", "cm", "micron", nm"

These are case-insensitive and may be abbreviated.
This setting also affects the ignore/notice range
interpretation.

8.11.4.10 xLog

Set the x-axis to logarithmic or linear for energy or wavelength plots [bool].

xLog has no effect on plots in channel space. xLog
and yLog will not work for model-related plots
(eg. model, ufspec, and their variants) as their axes
are always set to log scale.

8.11.4.11 yLog

See xLog.

The documentation for this class was generated from the following file:

• plot.py

8.12 Response Class Reference

Public Member Functions

• def __init__

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.12 Response Class Reference 87

• def setPars
• def show

Public Attributes

• gain

A response model object (class RModel) for applying a shift in response file gain.

• arf

Get/Set the arf filename string.

• chanEnergies

Tuple of floats, the detector channel energies in keV.

• energies

Tuple of floats, the photon energies in keV which are stored in the MATRIX extension.

• rmf

The response file name string.

• sourceNumber

The 1-based source number for which the response is assigned.

8.12.1 Detailed Description

Detector response class.

Public instance attributes implemented as properties, these are GET only
unless specified otherwise.

arf -- Get/Set the arf filename string.
Enter None or empty string to remove an existing arf.

chanEnergies -- Tuple of floats, the detector channel energies in keV.
These are the energies normally stored in the
EBOUNDS extension.

energies -- Tuple of floats, the photon energies in keV which are
stored in the MATRIX extension.

gain -- A response model object (class RModel) for applying
a shift in response file gain.

(Also see Response.setPars() for setting multiple
gain parameters at a time.)

When gain is turned ON, it creates two variable
fit Parameter object members:

gain.slope (default = 1.0)
gain.offset (default = 0.0)

To turn gain ON simply assign a value to EITHER
parameter, ie.:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.12 Response Class Reference 88

gain.slope = 1.05

This automatically also creates a gain.offset
parameter with default value 0.0, which you may
want to re-adjust. Examples:

gain.offset = .02
gain.offset.values = ".015,.001,,,,0.1"

’slope’ and ’offset’ are of the same type as regular
model parameters, and therefore have the same
functions, attributes, and syntax rules for setting
values. (See the Parameter class help for more
details.)

To turn gain OFF, call its off() method:
gain.off()

gain.off() restores the response to its original state,
and renders the ’slope’ and ’offset’ parameters
inaccessible.

rmf -- The response file name string.

sourceNumber -- The 1-based source number for which the response is
assigned.

This is normally always 1 unless multiple sources are
loaded for multiple-model evaluation.

8.12.2 Constructor & Destructor Documentation

8.12.2.1 def init (self, parent, respTuple)

Construct a Response object.

Intended for creation by a Spectrum object only.

8.12.3 Member Function Documentation

8.12.3.1 def setPars (self, seqPars)

Set multiple response parameters with a single function call.

Similar to the Model.setPars() function, this allows multiple
response parameters to be changed with just a SINGLE recalculation
performed at the end.

seqPars -- An arbitrary number of CONSECUTIVE parameter values
to be matched 1-to-1 with the response model’s
parameters.

Currently just 1 response model (’gain’) is available, which has

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.12 Response Class Reference 89

2 response parameters (’slope’ and ’offset’).

Examples:

s = Spectrum("file1")
resp = s.response

’gain’ is off by default and response parameters don’t yet exist.
The following call automatically turns ’gain’ on and creates
both ’slope’ and ’offset’ parameters even though it is only
assigning to ’slope’. ’offset’ will retain its default value
of 0.0.
resp.setPars(1.05) # Equivalent to doing: resp.gain.slope = 1.05

This is equivalent to: resp.gain.slope = .995
resp.gain.offset = .08
except that the recalculation is only performed at the end
rather than after each parameter is changed:
resp.setPars(.995, .08)

Can also assign auxiliary values by passing 1 or 2 string
arguments.
resp.setPars("1.1,,.02,.02,1.8,1.8","-.05,,-2,-2")

Remove gain and restore response to original state:
resp.gain.off()

8.12.3.2 def show (self)

Display response information including (optional) response parameters.

8.12.4 Member Data Documentation

8.12.4.1 arf

Get/Set the arf filename string.

Enter None or empty string to remove an existing arf.

8.12.4.2 chanEnergies

Tuple of floats, the detector channel energies in keV.

These are the energies normally stored in the
EBOUNDS extension.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.12 Response Class Reference 90

8.12.4.3 energies

Tuple of floats, the photon energies in keV which are stored in the MATRIX extension.

8.12.4.4 gain

A response model object (class RModel) for applying a shift in response file gain.

(Also see Response.setPars() for setting multiple
gain parameters at a time.)

When gain is turned ON, it creates two variable
fit Parameter object members:

gain.slope (default = 1.0)
gain.offset (default = 0.0)

To turn gain ON simply assign a value to EITHER
parameter, ie.:

gain.slope = 1.05

This automatically also creates a gain.offset
parameter with default value 0.0, which you may
want to re-adjust. Examples:

gain.offset = .02
gain.offset.values = ".015,.001,,,,0.1"

’slope’ and ’offset’ are of the same type as regular
model parameters, and therefore have the same
functions, attributes, and syntax rules for setting
values. (See the Parameter class help for more
details.)

To turn gain OFF, call its off() method:
gain.off()

gain.off() restores the response to its original state,
and renders the ’slope’ and ’offset’ parameters
inaccessible.

8.12.4.5 rmf

The response file name string.

8.12.4.6 sourceNumber

The 1-based source number for which the response is assigned.

This is normally always 1 unless multiple sources are
loaded for multiple-model evaluation.

The documentation for this class was generated from the following file:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.13 RModel Class Reference 91

• response.py

8.13 RModel Class Reference

Public Member Functions

• def __init__
• def __getattribute__
• def __setattr__
• def off

Public Attributes

• parameterNames

List of the response model’s parameter names (get only).

• isOn

Boolean flag showing the On/Off status of the RModel (get only).

8.13.1 Detailed Description

Response Model class.

Response models are functions which act upon the detector RMF. XSPEC
currently has just one response model: ’gain’, which is a built-in attribute
of the Response class. RModel objects are not intended for stand-alone
creation: its __init__ function should be considered private.

Public instance attributes.

<parameters> -- When RModel is ON, it contains an attribute of type
Parameter for every parameter in the model. An
RModel is turned ON by a ’set’ operation on ANY
of its parameters. For example with the ’gain’
RModel:

resp.gain.offset = .03

automatically creates ’offset’ AND ’slope’
parameters if they don’t already exist (’slope’
would be initialized to its default value of 1.0).
The shift is then applied immediately to the
Response object ’resp’.

When RModel is OFF (see the RModel.off() method),
the parameters are not accessible.

isOn -- Boolean flag showing the On/Off status of the RModel
(get only).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 92

parameterNames -- List of the response model’s parameter names
(get only).

8.13.2 Constructor & Destructor Documentation

8.13.2.1 def init (self, resp, parNames, rmodName)

RModel constructor.

Intended for internal use only.

8.13.3 Member Function Documentation

8.13.3.1 def getattribute (self, name)

8.13.3.2 def setattr (self, attrName, value)

8.13.3.3 def off (self)

Remove response parameters and turn the model OFF.

The Response is restored to its original state.

8.13.4 Member Data Documentation

8.13.4.1 isOn

Boolean flag showing the On/Off status of the RModel (get only).

8.13.4.2 parameterNames

List of the response model’s parameter names (get only).

The documentation for this class was generated from the following file:

• response.py

8.14 Spectrum Class Reference

Public Member Functions

• def __init__
• def dummyrsp

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 93

• def ignore
• def ignoredString
• def notice
• def noticedString
• def show

Public Attributes

• areaScale

The Spectrum area scaling factor.

• background

Get/Set the spectrum’s background.

• backScale

The Spectrum background scaling factor.

• cornorm

Get/Set the normalization of a spectrum’s correction file [float].

• correction

Get/Set the correction file.

• dataGroup

The data group to which the spectrum belongs [int].

• energies

Tuple of pairs of floats (also implemented as tuples) giving the E_Min and E_Max of
each noticed channel.

• eqwidth

Tuple of 3 floats containing the results of the most recent eqwidth calculation for this
spectrum (performed with the AllModels.eqwidth method).

• exposure

The exposure time keyword value [float].

• fileName

The spectrum’s file name [string].

• flux

A tuple containing the results of the most recent flux calculation for this spectrum.

• ignored

A list of the currently ignored (1-based) channel numbers.

• index

The spectrum’s current index number within the AllData container [int].

• isPoisson

Boolean flag, true if spectrum has Poisson errors.

• lumin

Similar to flux, the results of the most recent luminosity calculation.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 94

• multiresponse

Get/Set detector response ARRAY elements when using multiple sources.

• noticed

A list of the currently noticed (1-based) channel numbers.

• rate

A tuple containing the total Spectrum rates in counts/sec.

• response

Get/Set the detector response.

• values

Tuple of floats containing the spectrum rates for noticed channels in counts/cm∧2-sec.

• variance

Tuple of floats containing the variance of each noticed channel.

8.14.1 Detailed Description

Spectral data class.

Public instance attributes (implemented as properties). Unless stated
otherwise, each is GET only.

areaScale -- The Spectrum area scaling factor.
Either a single float (if file stores it as a keyword),
or a Tuple of floats (if file stores column).

background -- Get/Set the spectrum’s background.

Get: Returns the Background object associated with the
Spectrum. If Spectrum has no background object,
this will raise an Exception.

Set: Supply a background filename [string].
This will become the new background to the Spectrum
object, and any previously existing background will
be removed. If string is empty, all whitespace,
or the Python None variable, the background (if
any) will be removed.

backScale -- The Spectrum background scaling factor.
Either a single float (if file stores it as a keyword),
or a Tuple of floats (if file stores column).

cornorm -- Get/Set the normalization of a spectrum’s correction file
[float].

correction -- Get/Set the correction file.

Get: Returns the Spectrum’s current correction information
as an object of class Background. This raises an
Exception if Spectrum has no correction.

Set: Enter the filename string for the new correction.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 95

This will remove any previously existing
correction. Returns the new correction info
as an object of class Background.
If string is "none", empty, or all whitespace,
the current correction will be removed and this
will return None.

dataGroup -- The data group to which the spectrum belongs [int].

energies -- Tuple of pairs of floats (also implemented as tuples)
giving the E_Min and E_Max of each noticed channel.

eqwidth -- Tuple of 3 floats containing the results of the most recent
eqwidth calculation for this spectrum (performed with the
AllModels.eqwidth method).

The results are stored as:
[0] - eqwidth calculation
[1] - eqwidth error lower bound
[2] - eqwidth error upper bound

The error bounds will be 0.0 if no error calculation was
performed, and all will be 0.0 if eqwidth wasn’t
performed for this spectrum.

exposure -- The exposure time keyword value [float].

fileName -- The spectrum’s file name [string].

flux -- A tuple containing the results of the most recent flux
calculation for this spectrum.

The tuple values are:
(value, errLow, errHigh (in ergs/cm^2), value, errLow,
errHigh (in photons)) for each model applied to the
spectrum.

ignored -- A list of the currently ignored (1-based) channel numbers.

index -- The spectrum’s current index number within the AllData
container [int].

isPoisson -- Boolean flag, true if spectrum has Poisson errors.

lumin -- Similar to flux, the results of the most recent luminosity
calculation.

multiresponse -- Get/Set detector response ARRAY elements when
using multiple sources.

This is for use only when assigning multiple responses
to a spectrum, for multi-source/multi-model analysis.
For standard single-source analysis, use the
"response" attribute instead.

You must provide an array index for all multiresponse
get/set operations. Note that array indices ARE 0-BASED,
so multiresponse[0] corresponds to source 1. Examples:

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 96

Get the response assigned to source 1.
This particular call is the same as doing
"r1 = s.response"
r1 = spec.multiresponse[0]

Get the response for the second source.
Can only do this with multiresponse.
r2 = spec.multiresponse[1]

Define a third source by adding a new response:
spec.multiresponse[2] = "myResp3.pha"

Now remove the response for the second source:
spec.multiresponse[1] = None

noticed -- A list of the currently noticed (1-based) channel numbers.

rate -- A tuple containing the total Spectrum rates in counts/sec.

The tuple consists of:
[0] - current net rate (w/ background subtracted),
[1] - net rate variance,
[2] - total rate (without background),
[3] - predicted model rate

response -- Get/Set the detector response.

Use this for standard SINGLE-SOURCE analysis.
To add other responses for multi-source and multi-model
analysis, use the "multiresponse" attribute.

Get: Returns a Response object, or raises an
Exception if none exists

Set: Supply a response filename string. To remove
a response, supply an empty string or None.

values -- Tuple of floats containing the spectrum rates for noticed
channels in counts/cm^2-sec.

variance -- Tuple of floats containing the variance of each noticed
channel.

8.14.2 Constructor & Destructor Documentation

8.14.2.1 def init (self, dataFile)

Construct a Spectrum object.

Read in a spectrum and any associated background, response and
arf files. Spectrum is automatically added to the AllData container.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 97

dataFile - Spectral data filename [string].

8.14.3 Member Function Documentation

8.14.3.1 def dummyrsp (self, lowE = None, highE = None, nBins = None, scaleType =
None, chanOffset = None, chanWidth = None, sourceNum = 1)

Create a dummy response for this spectrum only.

Input arguments, all are optional:

lowE - Input response energy lower bound, in keV. [float]
highE - Input response energy higher bound, in keV. [float]
nBins - Number of bins into which the energy range is divided

[int].
scaleType - "log" or "lin" [string]
chanOffset - Starting value of dummy channel energies. [float]
chanWidth - Energy width of the channel bins. [float]

If this is set to 0, the dummy response
can only be used for evaluating model arrays,
and not for fitting to spectra.

sourceNum - Optional source number for the dummy response. [int]

Examples:

All values are optional, use keywords to enter values
non-consecutively. Unspecified values revert to the
current defaults.
s = Spectrum("dataFile.pha")
s.dummyrsp(.3, 30., 100, chanWidth=.5)
s.dummyrsp(highE = 50., sourceNum = 2)
s.dummyrsp(.1,10.,100,"lin",.0, 1.0, 1)

Initial defaults: lowE = .1, highE = 50., nBins = 50, scaleType = "log"
chanOffset = .0, chanWidth = .0, sourceNum = 1

The defaults for lowE, highE, nBins, scaleType, and chanOffset will be
modified for each explicit new entry. chanWidth always defaults to 0
and sourceNum always defaults to 1.

To remove the spectrum’s dummy response(s) and restore actual
responses (if any), call AllData.removeDummyrsp().

8.14.3.2 def ignore (self, ignoreRange)

Ignore a range of the spectrum by channels or energy/wavelengths.

ignoreRange -- String specifying the channel range to ignore.
This follows the same syntax as used in the standard
Xspec "ignore" command. If the numbers are floats
rather than ints, they will be treated as energies or
wavelengths (depending on the Plot settings).

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 98

Note that "bad" will not work from here, as it can
only be applied to ALL of the loaded spectra.

To apply range(s) to multiple spectra, use the AllData
ignore function.

8.14.3.3 def ignoredString (self)

Return a string of ignored channel ranges.

This produces a string in compact (hyphenated) form, which can be
used as input to a subsequent ’ignore’ command. Example:

If ignored channels are [1,3,4,5,7],
this will output "1 3-5 7".

8.14.3.4 def notice (self, noticeRange)

Notice a range of the spectrum by channels or energy/wavelengths.

noticeRange -- String specifying the channel range to notice.
This follows the same syntax as used in the standard
Xspec "notice" command. If the numbers are floats
rather than ints, they will be treated as energies or
wavelengths (depending on the Plot settings). If the
string is "all", it will notice all channels in
spectrum.

To apply range(s) to multiple spectra, use the AllData
notice function.

8.14.3.5 def noticedString (self)

Return a string of noticed channel ranges.

This produces a string in compact (hyphenated) form, which can be
used as input to a subsequent ’notice’ command. Example:

If noticed channels are [1,3,4,5,7],
this will output "1 3-5 7".

8.14.3.6 def show (self)

Display information for this Spectrum object

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 99

8.14.4 Member Data Documentation

8.14.4.1 areaScale

The Spectrum area scaling factor.

Either a single float (if file stores it as a keyword),
or a Tuple of floats (if file stores column).

8.14.4.2 background

Get/Set the spectrum’s background.

Get: Returns the Background object associated with the
Spectrum. If Spectrum has no background object,
this will raise an Exception.

Set: Supply a background filename [string].
This will become the new background to the Spectrum
object, and any previously existing background will
be removed. If string is empty, all whitespace,
or the Python None variable, the background (if
any) will be removed.

8.14.4.3 backScale

The Spectrum background scaling factor.

Either a single float (if file stores it as a keyword),
or a Tuple of floats (if file stores column).

8.14.4.4 cornorm

Get/Set the normalization of a spectrum’s correction file [float].

8.14.4.5 correction

Get/Set the correction file.

Get: Returns the Spectrum’s current correction information
as an object of class Background. This raises an
Exception if Spectrum has no correction.

Set: Enter the filename string for the new correction.
This will remove any previously existing
correction. Returns the new correction info

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 100

as an object of class Background.
If string is "none", empty, or all whitespace,
the current correction will be removed and this
will return None.

8.14.4.6 dataGroup

The data group to which the spectrum belongs [int].

8.14.4.7 energies

Tuple of pairs of floats (also implemented as tuples) giving the E_Min and E_Max of
each noticed channel.

8.14.4.8 eqwidth

Tuple of 3 floats containing the results of the most recent eqwidth calculation for this
spectrum (performed with the AllModels.eqwidth method).

The results are stored as:
[0] - eqwidth calculation
[1] - eqwidth error lower bound
[2] - eqwidth error upper bound

The error bounds will be 0.0 if no error calculation was
performed, and all will be 0.0 if eqwidth wasn’t
performed for this spectrum.

8.14.4.9 exposure

The exposure time keyword value [float].

8.14.4.10 fileName

The spectrum’s file name [string].

8.14.4.11 flux

A tuple containing the results of the most recent flux calculation for this spectrum.

The tuple values are:
(value, errLow, errHigh (in ergs/cm^2), value, errLow,
errHigh (in photons)) for each model applied to the
spectrum.

8.14.4.12 ignored

A list of the currently ignored (1-based) channel numbers.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.14 Spectrum Class Reference 101

8.14.4.13 index

The spectrum’s current index number within the AllData container [int].

8.14.4.14 isPoisson

Boolean flag, true if spectrum has Poisson errors.

8.14.4.15 lumin

Similar to flux, the results of the most recent luminosity calculation.

8.14.4.16 multiresponse

Get/Set detector response ARRAY elements when using multiple sources.

This is for use only when assigning multiple responses
to a spectrum, for multi-source/multi-model analysis.
For standard single-source analysis, use the
"response" attribute instead.

You must provide an array index for all multiresponse
get/set operations. Note that array indices ARE 0-BASED,
so multiresponse[0] corresponds to source 1. Examples:
Get the response assigned to source 1.
This particular call is the same as doing
"r1 = s.response"
r1 = spec.multiresponse[0]
Get the response for the second source.
Can only do this with multiresponse.
r2 = spec.multiresponse[1]
Define a third source by adding a new response:
spec.multiresponse[2] = "myResp3.pha"
Now remove the response for the second source:
spec.multiresponse[1] = None

8.14.4.17 noticed

A list of the currently noticed (1-based) channel numbers.

8.14.4.18 rate

A tuple containing the total Spectrum rates in counts/sec.

The tuple consists of:
[0] - current net rate (w/ background subtracted),
[1] - net rate variance,
[2] - total rate (without background),
[3] - predicted model rate

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 102

8.14.4.19 response

Get/Set the detector response.

Use this for standard SINGLE-SOURCE analysis.
To add other responses for multi-source and multi-model
analysis, use the "multiresponse" attribute.

Get: Returns a Response object, or raises an
Exception if none exists

Set: Supply a response filename string. To remove
a response, supply an empty string or None.

8.14.4.20 values

Tuple of floats containing the spectrum rates for noticed channels in counts/cm∧2-sec.

8.14.4.21 variance

Tuple of floats containing the variance of each noticed channel.

The documentation for this class was generated from the following file:

• spectrum.py

8.15 XspecSettings Class Reference

Public Member Functions

• def __init__
• def addModelString
• def delModelString
• def closeLog
• def openLog
• def show

Public Attributes

• abund

Get/Set the abundance table used in the plasma emission and photoelectric absorption
models [string].

• allowNewAttributes

Get/Set the flag which allows the setting of new instance attributes for ALL PyXspec
classes [bool].

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 103

• chatter

Get/Set the console chatter level [int].

• logChatter

Get/Set the log chatter level [int].

• cosmo

Get/Set the cosmology values.

• log

Get only: Returns the currently opened log file object, or None if no log file is open
(also see the openLog and closeLog methods).

• modelStrings

XSPEC’s internal database of <string_name>, <string_value> pairs for settings
which may be accessed by model functions.

• parallel

An attribute for controlling the number of parallel processes in use during various XS-
PEC contexts.

• seed

Re-seed and re-initialize XSPEC’s random-number generator with the supplied integer
value (SET only).

• version

The version strings for PyXspec and standard XSPEC.

• xsect

Change the photoelectric absorption cross-sections in use [string].

8.15.1 Detailed Description

Storage class for Xspec settings.

This is a singleton - only 1 instance allowed

Public instance attributes (implemented as properties):

abund -- Get/Set the abundance table used in the plasma emission and
photoelectric absorption models [string].

Valid tables: angr, aspl, feld, aneb, grsa, wilm, lodd,
file <filename>

allowNewAttributes -- Get/Set the flag which allows the setting of new
instance attributes for ALL PyXspec classes [bool].

This is False by default, and is intended to catch the
user’s attention if they misspell an attribute name
when attempting to set it. Under normal Python
behavior, a misspelling would simply create a new
attribute and issue no warnings or errors.

You must make sure this flag is set to True if you

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 104

genuinely wish to add new attributes.

chatter -- Get/Set the console chatter level [int].
logChatter -- Get/Set the log chatter level [int].

cosmo -- Get/Set the cosmology values.

Get: Returns a tuple of floats containing (H0, q0, l0), where
H0 is the Hubble constant in km/(s-Mpc),
q0 is the deceleration parameter, and
l0 is the cosmological constant.

Set: Enter a single string containing one or more of
H0, q0, l0. Examples:

Xset.cosmo = "100" # sets H0 to 100.0
Xset.cosmo = ",0" # sets q0 to 0.0
Xset.cosmo = ",,0.7" # sets l0 to 0.7
Xset.cosmo = "50 .5 0." # sets H0=50.0, q0=0.5, l0=0.0

log -- Get only: Returns the currently opened log file object,
or None if no log file is open (also see the openLog
and closeLog methods).

modelStrings -- XSPEC’s internal database of <string_name>,
<string_value> pairs for settings which may be
accessed by model functions.

Get: Returns a tuple of tuples, the inner tuples
being composed of <string_name>,<string_value>
string pairs.

Set: Replaces ENTIRE database with user-supplied
new database. Input may be a dictionary of
<string_name>:<string_value> entries, or a tuple
of (<string_name>,<string_value>) tuples.

For inserting and deleting INDIVIDUAL string
name and value pairs, use the addModelString and
delModelString methods.

parallel -- An attribute for controlling the number of parallel
processes in use during various XSPEC contexts.
Examples:

Use up to 4 parallel processes during
Levenberg-Marquardt fitting.
Xset.parallel.leven = 4

Use up to 4 parallel processes during
Fit.error() command runs.
Xset.parallel.error = 4

Reset all contexts to single process usage.
Xset.parallel.reset()

seed -- Re-seed and re-initialize XSPEC’s random-number generator

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 105

with the supplied integer value (SET only).

version -- The version strings for PyXspec and standard XSPEC.
GET only, this returns a tuple containing:
[0] - The PyXspec version string
[1] - Standard XSPEC’s version string

xsect -- Change the photoelectric absorption cross-sections in use
[string].

Available options: "bcmc", "obcm", "vern"

8.15.2 Constructor & Destructor Documentation

8.15.2.1 def init (self)

8.15.3 Member Function Documentation

8.15.3.1 def addModelString (self, key, value)

Add a key,value pair of strings to XSPEC’s internal database.

This database provides a way to pass string values to certain
model functions which are hardcoded to search for "key".
(See the XSPEC manual description for the "xset" command for a
table showing model/key usage.)

If the key,value pair already exists, it will be replaced with
the new entries.

8.15.3.2 def closeLog (self)

Close Xspec’s current log file.

8.15.3.3 def delModelString (self, key)

Remove a key,value pair from XSPEC’s internal string database.

8.15.3.4 def openLog (self, fileName)

Open a file and set it to be Xspec’s log file.

fileName -- The name of the log file.

If Xspec already has an open log file, it will close it.
Returns a Python file object for the new log file.

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 106

Once opened, the log file object is also stored as the
Xset.log attribute.

8.15.3.5 def show (self)

8.15.4 Member Data Documentation

8.15.4.1 abund

Get/Set the abundance table used in the plasma emission and photoelectric absorption
models [string].

Valid tables: angr, aspl, feld, aneb, grsa, wilm, lodd,
file <filename>

8.15.4.2 allowNewAttributes

Get/Set the flag which allows the setting of new instance attributes for ALL PyXspec
classes [bool].

This is False by default, and is intended to catch the
user’s attention if they misspell an attribute name
when attempting to set it. Under normal Python
behavior, a misspelling would simply create a new
attribute and issue no warnings or errors.

You must make sure this flag is set to True if you
genuinely wish to add new attributes.

8.15.4.3 chatter

Get/Set the console chatter level [int].

8.15.4.4 cosmo

Get/Set the cosmology values.

Get: Returns a tuple of floats containing (H0, q0, l0), where
H0 is the Hubble constant in km/(s-Mpc),
q0 is the deceleration parameter, and
l0 is the cosmological constant.

Set: Enter a single string containing one or more of
H0, q0, l0. Examples:

Xset.cosmo = "100" # sets H0 to 100.0

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 107

Xset.cosmo = ",0" # sets q0 to 0.0
Xset.cosmo = ",,0.7" # sets l0 to 0.7
Xset.cosmo = "50 .5 0." # sets H0=50.0, q0=0.5, l0=0.0

8.15.4.5 log

Get only: Returns the currently opened log file object, or None if no log file is open (also
see the openLog and closeLog methods).

8.15.4.6 logChatter

Get/Set the log chatter level [int].

8.15.4.7 modelStrings

XSPEC’s internal database of <string_name>, <string_value> pairs for settings which
may be accessed by model functions.

Get: Returns a tuple of tuples, the inner tuples
being composed of <string_name>,<string_value>
string pairs.

Set: Replaces ENTIRE database with user-supplied
new database. Input may be a dictionary of
<string_name>:<string_value> entries, or a tuple
of (<string_name>,<string_value>) tuples.

For inserting and deleting INDIVIDUAL string
name and value pairs, use the addModelString and
delModelString methods.

8.15.4.8 parallel

An attribute for controlling the number of parallel processes in use during various XSP-
EC contexts.

Examples:
se up to 4 parallel processes during
Levenberg-Marquardt fitting.
t.parallel.leven = 4
se up to 4 parallel processes during
Fit.error() command runs.
t.parallel.error = 4
eset all contexts to single process usage.
t.parallel.reset()

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

8.15 XspecSettings Class Reference 108

8.15.4.9 seed

Re-seed and re-initialize XSPEC’s random-number generator with the supplied integer
value (SET only).

8.15.4.10 version

The version strings for PyXspec and standard XSPEC.

GET only, this returns a tuple containing:
[0] - The PyXspec version string
[1] - Standard XSPEC’s version string

8.15.4.11 xsect

Change the photoelectric absorption cross-sections in use [string].

Available options: "bcmc", "obcm", "vern"

The documentation for this class was generated from the following file:

• xset.py

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

Index

Background, 35
Chain, 38
ChainManager, 41
Component, 44
DataManager, 45
FakeitSettings, 50
FitManager, 54
Model, 62
ModelManager, 67
Parameter, 75
PlotManager, 79
RModel, 90
Response, 86
Spectrum, 92
XspecSettings, 102
__add__

parameter::Parameter, 77
__call__

chain::ChainManager, 42
data::DataManager, 46
model::Model, 64
model::ModelManager, 68
plot::PlotManager, 82

__float__
parameter::Parameter, 77

__getattribute__
response::RModel, 92

__iadd__
chain::ChainManager, 42
data::DataManager, 46
model::ModelManager, 68
parameter::Parameter, 77

__imul__
parameter::Parameter, 77

__init__
chain::Chain, 39
chain::ChainManager, 42
data::DataManager, 46
data::FakeitSettings, 52
fit::FitManager, 57
model::Component, 44
model::Model, 63

model::ModelManager, 68
parameter::Parameter, 77
plot::PlotManager, 81
response::Response, 88
response::RModel, 91
spectrum::Background, 36
spectrum::Spectrum, 96
xset::XspecSettings, 104

__isub__
chain::ChainManager, 42
data::DataManager, 46
model::ModelManager, 69

__mul__
parameter::Parameter, 77

__radd__
parameter::Parameter, 77

__rmul__
parameter::Parameter, 77

__setattr__
model::Component, 45
model::Model, 64
response::RModel, 92

abund
xset::XspecSettings, 105

add
plot::PlotManager, 84

addCommand
plot::PlotManager, 82

addModelString
xset::XspecSettings, 104

addPyMod
model::ModelManager, 69

allowNewAttributes
xset::XspecSettings, 105

area
plot::PlotManager, 84

areaScale
spectrum::Background, 37
spectrum::Spectrum, 98

arf
data::FakeitSettings, 52
response::Response, 89

INDEX 110

backExposure
data::FakeitSettings, 53

backScale
spectrum::Background, 37
spectrum::Spectrum, 99

background
data::FakeitSettings, 53
plot::PlotManager, 84
spectrum::Spectrum, 98

backgroundVals
plot::PlotManager, 82

bayes
fit::FitManager, 59

burn
chain::Chain, 39

calcFlux
model::ModelManager, 70

calcLumin
model::ModelManager, 70

chain::Chain
__init__, 39
burn, 39
fileName, 40
fileType, 40
proposal, 40
rand, 40
run, 39
runLength, 40
show, 39
temperature, 40
totalLength, 40

chain::ChainManager
__call__, 42
__iadd__, 42
__init__, 42
__isub__, 42
clear, 43
defBurn, 43
defFileType, 43
defLength, 43
defProposal, 43
defRand, 43
defTemperature, 43
show, 43
stat, 43

chanEnergies
response::Response, 89

chatter
xset::XspecSettings, 106

clear
chain::ChainManager, 43
data::DataManager, 46
model::ModelManager, 70

closeLog
xset::XspecSettings, 105

commands
plot::PlotManager, 85

componentNames
model::Model, 66

cornorm
spectrum::Spectrum, 99

correction
data::FakeitSettings, 53
spectrum::Spectrum, 99

cosmo
xset::XspecSettings, 106

covariance
fit::FitManager, 59

criticalDelta
fit::FitManager, 60

data::DataManager
__call__, 46
__iadd__, 46
__init__, 46
__isub__, 46
clear, 46
diagrsp, 46
dummyrsp, 47
fakeit, 47
ignore, 49
nGroups, 50
nSpectra, 50
notice, 50
removeDummyrsp, 50
show, 50

data::FakeitSettings
__init__, 52
arf, 52
backExposure, 53
background, 53

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

INDEX 111

correction, 53
exposure, 53
fileName, 53
response, 53

dataGroup
spectrum::Spectrum, 99

defBurn
chain::ChainManager, 43

defFileType
chain::ChainManager, 43

defLength
chain::ChainManager, 43

defProposal
chain::ChainManager, 43

defRand
chain::ChainManager, 43

defTemperature
chain::ChainManager, 43

delCommand
plot::PlotManager, 82

delModelString
xset::XspecSettings, 105

delta
fit::FitManager, 60

device
plot::PlotManager, 85

diagrsp
data::DataManager, 46

dof
fit::FitManager, 60

dummyrsp
data::DataManager, 47
spectrum::Spectrum, 96

energies
model::Model, 64
response::Response, 89
spectrum::Spectrum, 99

eqwidth
model::ModelManager, 70
spectrum::Spectrum, 99

error
fit::FitManager, 57
parameter::Parameter, 78

exposure
data::FakeitSettings, 53

spectrum::Background, 37
spectrum::Spectrum, 100

expression
model::Model, 66

fakeit
data::DataManager, 47

fileName
chain::Chain, 40
data::FakeitSettings, 53
spectrum::Background, 37
spectrum::Spectrum, 100

fileType
chain::Chain, 40

fit::FitManager
__init__, 57
bayes, 59
covariance, 59
criticalDelta, 60
delta, 60
dof, 60
error, 57
ftest, 57
goodness, 58
improve, 58
method, 60
nIterations, 60
perform, 58
query, 61
renorm, 58
show, 58
statMethod, 61
statTest, 61
statistic, 61
steppar, 58
stepparResults, 59
testStatistic, 61
weight, 61

flux
model::Model, 66
spectrum::Spectrum, 100

folded
model::Model, 65

frozen
parameter::Parameter, 78

ftest

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

INDEX 112

fit::FitManager, 57

gain
response::Response, 89

goodness
fit::FitManager, 58

ignore
data::DataManager, 49
spectrum::Spectrum, 97

ignored
spectrum::Spectrum, 100

ignoredString
spectrum::Spectrum, 97

improve
fit::FitManager, 58

index
parameter::Parameter, 78
spectrum::Spectrum, 100

initpackage
model::ModelManager, 71

iplot
plot::PlotManager, 82

isOn
response::RModel, 92

isPoisson
spectrum::Background, 37
spectrum::Spectrum, 100

link
parameter::Parameter, 78

lmod
model::ModelManager, 72

log
xset::XspecSettings, 106

logChatter
xset::XspecSettings, 106

lumin
model::Model, 67
spectrum::Spectrum, 100

method
fit::FitManager, 60

model
plot::PlotManager, 83

model::Component

__init__, 44
__setattr__, 45
name, 45
parameterNames, 45

model::Model
__call__, 64
__init__, 63
__setattr__, 64
componentNames, 66
energies, 64
expression, 66
flux, 66
folded, 65
lumin, 67
nParameters, 67
name, 67
setPars, 65
show, 66
showList, 66
startParIndex, 67
untie, 66
values, 66

model::ModelManager
__call__, 68
__iadd__, 68
__init__, 68
__isub__, 69
addPyMod, 69
calcFlux, 70
calcLumin, 70
clear, 70
eqwidth, 70
initpackage, 71
lmod, 72
setEnergies, 72
setPars, 73
show, 74
simpars, 74
sources, 75
systematic, 75

modelStrings
xset::XspecSettings, 106

multiresponse
spectrum::Spectrum, 100

nGroups

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

INDEX 113

data::DataManager, 50
nIterations

fit::FitManager, 60
nParameters

model::Model, 67
nSpectra

data::DataManager, 50
name

model::Component, 45
model::Model, 67
parameter::Parameter, 78

noID
plot::PlotManager, 83

notice
data::DataManager, 50
spectrum::Spectrum, 97

noticed
spectrum::Spectrum, 101

noticedString
spectrum::Spectrum, 98

off
response::RModel, 92

openLog
xset::XspecSettings, 105

parallel
xset::XspecSettings, 107

parameter::Parameter
__add__, 77
__float__, 77
__iadd__, 77
__imul__, 77
__init__, 77
__mul__, 77
__radd__, 77
__rmul__, 77
error, 78
frozen, 78
index, 78
link, 78
name, 78
prior, 78
sigma, 78
unit, 79
untie, 77

values, 79
parameterNames

model::Component, 45
response::RModel, 92

perHz
plot::PlotManager, 85

perform
fit::FitManager, 58

plot::PlotManager
__call__, 82
__init__, 81
add, 84
addCommand, 82
area, 84
background, 84
backgroundVals, 82
commands, 85
delCommand, 82
device, 85
iplot, 82
model, 83
noID, 83
perHz, 85
redshift, 85
setGroup, 83
setID, 83
setRebin, 83
show, 84
splashPage, 85
x, 84
xAxis, 85
xErr, 84
xLog, 86
y, 84
yErr, 84
yLog, 86

prior
parameter::Parameter, 78

proposal
chain::Chain, 40

query
fit::FitManager, 61

rand
chain::Chain, 40

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

INDEX 114

rate
spectrum::Spectrum, 101

redshift
plot::PlotManager, 85

removeDummyrsp
data::DataManager, 50

renorm
fit::FitManager, 58

response
data::FakeitSettings, 53
spectrum::Spectrum, 101

response::RModel
__getattribute__, 92
__init__, 91
__setattr__, 92
isOn, 92
off, 92
parameterNames, 92

response::Response
__init__, 88
arf, 89
chanEnergies, 89
energies, 89
gain, 89
rmf, 90
setPars, 88
show, 89
sourceNumber, 90

rmf
response::Response, 90

run
chain::Chain, 39

runLength
chain::Chain, 40

seed
xset::XspecSettings, 107

setEnergies
model::ModelManager, 72

setGroup
plot::PlotManager, 83

setID
plot::PlotManager, 83

setPars
model::Model, 65
model::ModelManager, 73

response::Response, 88
setRebin

plot::PlotManager, 83
show

chain::Chain, 39
chain::ChainManager, 43
data::DataManager, 50
fit::FitManager, 58
model::Model, 66
model::ModelManager, 74
plot::PlotManager, 84
response::Response, 89
spectrum::Spectrum, 98
xset::XspecSettings, 105

showList
model::Model, 66

sigma
parameter::Parameter, 78

simpars
model::ModelManager, 74

sourceNumber
response::Response, 90

sources
model::ModelManager, 75

spectrum::Background
__init__, 36
areaScale, 37
backScale, 37
exposure, 37
fileName, 37
isPoisson, 37
values, 37
variance, 37

spectrum::Spectrum
__init__, 96
areaScale, 98
backScale, 99
background, 98
cornorm, 99
correction, 99
dataGroup, 99
dummyrsp, 96
energies, 99
eqwidth, 99
exposure, 100
fileName, 100

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

INDEX 115

flux, 100
ignore, 97
ignored, 100
ignoredString, 97
index, 100
isPoisson, 100
lumin, 100
multiresponse, 100
notice, 97
noticed, 101
noticedString, 98
rate, 101
response, 101
show, 98
values, 101
variance, 101

splashPage
plot::PlotManager, 85

startParIndex
model::Model, 67

stat
chain::ChainManager, 43

statMethod
fit::FitManager, 61

statTest
fit::FitManager, 61

statistic
fit::FitManager, 61

steppar
fit::FitManager, 58

stepparResults
fit::FitManager, 59

systematic
model::ModelManager, 75

temperature
chain::Chain, 40

testStatistic
fit::FitManager, 61

totalLength
chain::Chain, 40

unit
parameter::Parameter, 79

untie
model::Model, 66

parameter::Parameter, 77

values
model::Model, 66
parameter::Parameter, 79
spectrum::Background, 37
spectrum::Spectrum, 101

variance
spectrum::Background, 37
spectrum::Spectrum, 101

version
xset::XspecSettings, 107

weight
fit::FitManager, 61

x
plot::PlotManager, 84

xAxis
plot::PlotManager, 85

xErr
plot::PlotManager, 84

xLog
plot::PlotManager, 86

xsect
xset::XspecSettings, 107

xset::XspecSettings
__init__, 104
abund, 105
addModelString, 104
allowNewAttributes, 105
chatter, 106
closeLog, 105
cosmo, 106
delModelString, 105
log, 106
logChatter, 106
modelStrings, 106
openLog, 105
parallel, 107
seed, 107
show, 105
version, 107
xsect, 107

y

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

INDEX 116

plot::PlotManager, 84
yErr

plot::PlotManager, 84
yLog

plot::PlotManager, 86

Generated on Tue Jul 21 2015 10:41:44 for PyXspec by Doxygen

	PyXspec Documentation
	Introduction
	About This Manual
	Authors

	Release Notes
	Version 1.1.0 Jul 2015 [XSPEC 12.9.0]
	New Features
	Fixes

	Version 1.0 Feb 2012 [XSPEC 12.7.1]
	New Features
	Fixes

	Build and Install PyXspec
	Requirements
	Building/Installing
	Running on Mac OS X
	Troubleshooting

	A Tutorial - Quick Version
	Jumping In - The Really Quick Version
	Terminology
	Getting Help
	The 6 Global Objects
	Loading And Removing Data
	Defining Models
	Component and Parameter Objects
	Setting Multiple Parameters At A Time

	Fitting
	Plotting

	A Tutorial - Extended Version
	Contents
	Data
	Background, Response, and Arf
	Ignore/Notice

	Models
	Model With Multiple Data Groups
	Defining Multiple Models
	Component And Parameter Access Part 2
	Gain Parameters (Response Models)
	Flux Calculations
	Local Models in C/C++/Fortran
	Local Models in Python

	Fitting
	Error
	Query
	Steppar

	Fakeit
	From Existing Spectra
	From Scratch
	FakeitSettings Objects
	OGIP Type-2 Files

	Monte Carlo Markov Chains (MCMC)
	Plotting
	XSPEC Settings
	Logging And XSPEC Output
	Exceptions And Error Handling
	Adding Attributes To PyXspec Objects
	Using With Other Packages

	What's Missing
	Class Index
	Class List

	Class Documentation
	Background Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Data Documentation

	Chain Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ChainManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	Component Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	DataManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	FakeitSettings Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Data Documentation

	FitManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	Model Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	ModelManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	Parameter Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	PlotManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	Response Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	RModel Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	Spectrum Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	XspecSettings Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

